Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 466: 133437, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246063

RESUMEN

A one-pot synthesis afforded a magnetic, crosslinked polymer adsorbent (m-P6) with a variety of functional groups to realize simultaneous adsorption of Cd2+, Pb2+, Hg2+, and As3+. The material was characterized by TEM-EDS, XRD, FT-IR, VSM, and XPS. Kinetic and isothermal analyses suggested mainly chemisorption processes of heavy metal ions that form multiple layers on heterogeneous surfaces. Theoretical adsorption capacities calculated by a pseudo-2nd-order kinetic model and the Sips isothermal model were 282.88 mg/g for Cd2+, 326.18 mg/g for Pb2+, 117.85 mg/g for Hg2+, and 320.29 mg/g for As3+. m-P6 not only can efficiently adsorb divalent heavy metals (Cd2+, Pb2+, Hg2+), but also demonstrate a process of adsorption-driven catalytic oxidation by single-electron transfer (SET) from As3+ to As5+. In application, in addition to adsorption in water, m-P6 is capable of minimizing matrix interference, and extracting trace heavy metals in a complex environment (cereal) through easy operations for improving the detection accuracy, as well as it is potential for application in detection of trace heavy metals in foodstuffs. m-P6 can be readily regenerated and efficiently recycled for 5 cycles using eluent E12 and dilute acid.

2.
Se Pu ; 41(6): 504-512, 2023 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-37259875

RESUMEN

Aflatoxin (AFT) is an extremely toxic and highly toxic carcinogenic substance. This is particularly problematic due to the risk of aflatoxin contamination in raw feed materials and products during production, transportation, and storage. In this study, immunoaffinity magnetic beads (IMBs) were prepared for the purification of four aflatoxins (aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2)). The aflatoxin contents were then determined rapidly and accurately using ultra performance liquid chromatography (UPLC). More specifically, the coupling ratio of magnetic beads (MBs) to the aflatoxin monoclonal antibody was initially optimized, wherein an MB volume of 1 mL and an antibody content of 2.0 mg was found to meet the purification requirements of this method. The magnetic properties of the MBs and the IMBs were then investigated using a vibrating sample magnetometer (VSM) at room temperature. As a result, the maximum saturation super magnetizations of the MBs and the IMBs were determined to be 28.61 and 23.22 emu/g, respectively, indicating that the saturation magnetization intensity of the IMBs was reduced by coupling with a non-magnetic antibody. However, the saturation magnetization intensity remained sufficiently high to permit magnetic separation from the solution. In addition, the appearance of the IMBs was examined using a biomicroscope, and it was clear that the magnetic cores were wrapped in agarose gel. Furthermore, the reaction time between the IMBs and the aflatoxins was investigated, and the optimal reaction time for meeting the purification requirements was determined to be 2 min. The stability of the IMBs was then evaluated under refrigerated storage conditions at 4 ℃. It was found that the prepared IMBs maintained a high aflatoxin enrichment capacity for at least eight months. Through the examination of three different extraction solutions, a mixture of acetonitrile and water (70∶30, v/v) was found to be optimal for the extraction of aflatoxins from the feed samples. Moreover, five sample dilutions and purification effects were also examined, and phosphate-buffered saline (containing 0.5% Tween-20) was selected as the preferred sample dilutant. With the optimized conditions, the effectiveness of using IMB for the purification of different feed samples was investigated. The resulting UPLC chromatogram showed no spurious peaks close to the target peaks, demonstrating a good purification performance. Following matrix spiking (5, 20, and 40 µg/kg, calculated based on AFB1) of the four feed samples (i. e., soybean meal, distillers dried grains with solubles, pig feed, and chicken feed), the spiked recoveries of the four aflatoxins ranged from 91.1% to 119.4% with a relative standard deviation (RSD) of <6.9%. In addition, the inter-day precision was 4.5% to 7.5%, and the method exhibited a good reproducibility. Subsequently, the developed method was used to detect AFB1 using reference materials. The test value was 18.6 µg/kg with an accuracy of 110.3%, thereby constituting satisfactory results. Upon testing 21 randomly purchased feed samples using this method, four of these samples contained AFB1, and the test results obtained using the developed method and stable isotope dilution LC-MS/MS were comparable. It was therefore apparent that the IMB purification method combined with UPLC analysis exhibited a good accuracy for aflatoxin determination. Thus, an automatic purification system was established to facilitate the operation and use of IMBs. This system was able to purify 24 samples simultaneously in 30 min. An IMB purification kit for was also designed and produced for aflatoxin detection in feed samples. The kit contained the sample dilutant, IMBs, the washing solution, and the eluent. After extraction of the feed sample, the extraction solution was added to the sample wells provided in the kit, and the purification system automatically completed the steps of aflatoxin enrichment, impurity washing, and elution of the target toxin. It should be noted that the purification process does not require the operator to manually add the solution, thereby simplifying operation. Overall, the purification method established in this study achieved the high-throughput and automatic purification of the four aflatoxins in feed samples.


Asunto(s)
Aflatoxinas , Animales , Porcinos , Aflatoxinas/análisis , Cromatografía Liquida , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem/métodos
3.
J Microbiol Methods ; 190: 106319, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34480973

RESUMEN

Pathogens within Fusarium species are the primary agents of Fusarium head blight (FHB) of wheat, which bring about yield reduction and deoxynivalenol (DON) contamination and are of great concern worldwide. DON-producing Fusarium species can be classified into 3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON) chemotypes according to the trichothecene metabolites they produce. The detection of these two chemotypes of pathogens is paramount to the successful implementation of disease management strategies and pathogen-related DON forecasting models. In this study, a duplex droplet digital PCR (duplex ddPCR) assay was developed that allowed for the simultaneous quantitation of 3ADON and 15ADON chemotypes of DON-producing Fusarium species. The assay specificity was tested against 30 isolates of target Fusarium species and several non-target Fusarium species that are frequently isolated from wheat in China. Analyzing 90 wheat samples collected from the North China plain and Yangtze River plain demonstrated that the duplex ddPCR assay coupled with magnetic bead-based DNA extraction was competent for investigating composition of 3ADON and 15ADON chemotypes in Chinese wheat. This assay will be useful for monitoring the epidemic and geographic distribution of 3ADON and 15ADON chemotypes of FHB pathogens, which will help with the disease control and DON management.


Asunto(s)
Fusarium/genética , Fusarium/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Triticum/microbiología , China , ADN de Hongos , Fusariosis/microbiología , Fusarium/metabolismo , Genotipo , Enfermedades de las Plantas/microbiología , Tricotecenos/metabolismo
4.
RSC Adv ; 9(35): 19965-19972, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35514682

RESUMEN

In China, the production has not realized intensive cultivation and the problem of cadmium (Cd)-contaminated rice is salient, so it is important to classify rice with different degrees of Cd pollution by rapid detection method in situ. This paper established a method with a combination of dilute acid extraction pretreatment and electrochemical devices. Cd was extracted from rice using 3% HCl for 5 min. A standard curve was obtained based on a certified reference material in the rice matrix with different concentrations of Cd, which was fitted with the Cd concentration (µg kg-1) against the stripping peak current value (µA), and the linear correlation coefficient was 0.9997. To analyze the applicability of the method, three factors including substrate diluents, particle diameter of the sample, and stability towards the method were evaluated. The limit of detection (LOD) was 2.02 µg kg-1, and the repeatability and accuracy were satisfactory. Cd was determined in 142 samples collected from three major grain-producing provinces of China, and the results have good consistence with the microwave digestion-ICP-MS method. The developed method combined dilute acid extraction with a matrix matching standard curve in ASV for the first time, and it was significantly satisfactory for the detection requirements in China.

5.
RSC Adv ; 9(56): 32839-32847, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35529762

RESUMEN

In order to achieve rapid on-site screening and solve the problem of rapid pretreatment for the determination of lead (Pb2+) and cadmium (Cd2+) in cereals by a portable electrochemical analyzer with disposable screen-printed electrodes (SPEs), a new reliable and simple extraction method for Pb2+ and Cd2+ in cereals was developed. The Pb2+ and Cd2+ in cereals were purified by a mixed solution of 1 mol L-1 potassium iodide (KI)/5% vitamin C (VC)/ethyl acetate after being extracted by 10% HNO3, which transfers the Pb2+ and Cd2+ into ethyl acetate after a reaction with KI-VC. Then, the Pb2+ and Cd2+ were eluted from ethyl acetate with 5% HNO3 and were determined by an electrochemical analyzer with screen printed electrodes. Under the optimized conditions, the matrix calibration curves of Pb2+ and Cd2+ in rice and wheat showed good linear relationships with R 2 > 0.996. The method shows a detection limit (LOD) for Cd2+ in rice and wheat of 6.7 µg kg-1 and 11.5 µg kg-1, and the corresponding values for Pb2+ were 34.9 and 31.1 µg kg-1, respectively. The relative standard deviation (RSD) was less than 8.7% for Cd2+ and Pb2+. In addition, the recoveries of the tested reference materials using this method were between 80% and 120%. From sample pretreatment to testing results, the whole process took no more than 25 min, and the operation was simple for operators, green to the environment, cheap in terms of instruments, and above all suitable for on-site detection. The results implied that this portable electrochemical method with new pretreatment may be a good choice for screening Pb2+ and Cd2+ in cereal samples on-site.

6.
ACS Omega ; 3(11): 15924-15932, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30556018

RESUMEN

Fungi of the genus Fusarium can produce secondary metabolites such as naphthopyrones and naphthoquinones that are toxic and expected to threaten the food and feed safety. In this study, the occurrence of rubrofusarin, rubrofusarin isomer, and their quinone forms in grains was identified and confirmed using ultrahigh-performance liquid chromatography coupled with hybrid quadrupole orbital ion trap mass spectrometry (Q-Orbitrap MS). The quantitation of these compounds in grain samples was also investigated using Q-Orbitrap MS. The results showed the concentrations of rubrofusarin ranged from 3.278 to 33.82 µg/kg, from 0.815 to 61.86 µg/kg, and from 7.362 to 47.24 µg/kg for the maize, rice, and wheat samples, respectively. By comparison, the abundances of their quinone forms were relatively lower, and the concentration of quinone form of rubrofusarin isomer was relatively higher than that of quinone form of rubrofusarin. These compounds were also confirmed to coexist with other known Fusarium mycotoxins. The data-dependent tandem mass spectra obtained from the Q-Orbitrap MS were validated to provide a wealth of valuable information that allowed for advanced data interpretation for solid confirmation of these compounds in grains. To the best of our knowledge, this is the first study that concerns the occurrence and quantitation of rubrofusarin, rubrofusarin isomer, and their quinone forms in grains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...