Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 720: 150097, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754162

RESUMEN

Inteins are unique single-turnover enzymes that can excise themselves from the precursor protein without the aid of any external cofactors or energy. In most cases, inteins are covalently linked with the extein sequences and protein splicing happens spontaneously. In this study, a novel protein ligation system was developed based on two atypical split inteins without cross reaction, in which the large segments of one S1 and one S11 split intein fusion protein acted as a protein ligase, the small segments (only several amino acids long) was fused to the N-extein and C-extein, respectively. The splicing activity was demonstrated in E. coli and in vitro with different extein sequences, which showed ∼15% splicing efficiency in vitro. The protein trans-splicing in vitro was further optimized, and possible reaction explanations were explored. As a proof of concept, we expect this approach to expand the scope of trans-splicing-based protein engineering and provide new clues for intein based protein ligase.


Asunto(s)
Escherichia coli , Inteínas , Empalme de Proteína , Inteínas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Ligasas/metabolismo , Ligasas/genética , Ligasas/química , Exteínas/genética
2.
Int J Biol Macromol ; 268(Pt 2): 131936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692533

RESUMEN

With the increasing environmental and ecological problems caused by petroleum-based packaging materials, the focus has gradually shifted to natural resources for the preparation of functional food packaging materials. In addition to biodegradable properties, nanocellulose (NC) mechanical properties, and rich surface chemistry are also fascinating and desired to be one of the most probable green packaging materials. In this review, we firstly introduce the recent progress of novel applications of NC in food packaging, including intelligent packaging, nano(bio)sensors, and nano-paper; secondly, we focus on the modification techniques of NC to summarize the properties (antimicrobial, mechanical, hydrophobic, antioxidant, and so on) that are required for food packaging, to expand the new synthetic methods and application areas. After presenting all the latest advances related to material design and sustainable applications, an overview summarizing the safety of NC is presented to promote a continuous and healthy movement of NC toward the field of truly sustainable packaging.


Asunto(s)
Celulosa , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Celulosa/química , Nanoestructuras/química , Antioxidantes/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas
3.
Methods Mol Biol ; 2800: 189-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709485

RESUMEN

Understanding how signaling networks are regulated offers valuable insights into how cells and organisms react to internal and external stimuli and is crucial for developing novel strategies to treat diseases. To achieve this, it is necessary to delineate the intricate interactions between the nodes in the network, which can be accomplished by measuring the activities of individual nodes under perturbation conditions. To facilitate this, we have recently developed a biosensor barcoding technique that enables massively multiplexed tracking of numerous signaling activities in live cells using genetically encoded fluorescent biosensors. In this chapter, we detail how we employed this method to reconstruct the EGFR signaling network by systematically monitoring the activities of individual nodes under perturbations.


Asunto(s)
Técnicas Biosensibles , Transducción de Señal , Técnicas Biosensibles/métodos , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética
4.
Vaccines (Basel) ; 12(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675812

RESUMEN

Human papillomavirus (HPV) remains a global health concern because it contributes to the initiation of various HPV-associated cancers such as anal, cervical, oropharyngeal, penile, vaginal, and vulvar cancer. In HPV-associated cancers, oncogenesis begins with an HPV infection, which is linked to the activation of the Janus protein tyrosine kinase (JAK)/STAT signaling pathway. Various STAT signaling pathways, such as STAT3 activation, have been well documented for their tumorigenic role, yet the role of STAT1 in tumor formation remains unclear. In the current study, STAT1-/- mice were used to investigate the role of STAT1 in the tumorigenesis of a spontaneous HPV E6/E7-expressing oral tumor model. Subsequently, our candidate HPV DNA vaccine CRT/E7 was administered to determine whether the STAT1-/- host preserves a therapeutic-responsive tumor microenvironment. The results indicated that STAT1-/- induces robust tumorigenesis, yet a controlled tumor response was attained upon CRT/E7 vaccination. Characterizing this treatment effect, immunological analysis found a higher percentage of circulating CD4+ and CD8+ T cells and tumor-specific cytotoxic T cells. In addition, a reduction in exhaustive lymphocyte activity was observed. Further analysis of a whole-cell tumor challenge affirmed these findings, as spontaneous tumor growth was more rapid in STAT1-/- mice. In conclusion, STAT1 deletion accelerates tumorigenesis, but STAT1-/- mice maintains immunocompetency in CRT/E7 treatments.

5.
J Transl Med ; 22(1): 378, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649894

RESUMEN

BACKGROUND: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS: Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION: The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.


Asunto(s)
Arginina , Vacunas contra el Cáncer , Proteínas E7 de Papillomavirus , Proteínas E7 de Papillomavirus/inmunología , Vacunas contra el Cáncer/inmunología , Humanos , Animales , Membrana Externa Bacteriana/inmunología , Ratones Endogámicos C57BL , Femenino
6.
Nano Lett ; 24(9): 2861-2869, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408922

RESUMEN

Advanced portable healthcare devices with high efficiencies, small pressure drops, and high-temperature resistance are urgently desired in harsh environments with high temperatures, high humidities, and high levels of atmospheric pollution. Triboelectric nanogenerators (TENGs), which serve as energy converters in a revolutionary self-powered sensor device, present a sustainable solution for meeting these requirements. In this work, we developed a porous negative triboelectric material by synthesizing ZIF-8 on the surface of a cellulose/graphene oxide aerogel, grafting it with trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane, and adding a negative corona treatment, and it was combined with a positive triboelectric material to create a cellulose nanofiber-based TENG self-powered filter. The devices achieved a balance between a small pressure drop (53 Pa) and high filtration efficiency (98.97%, 99.65%, and 99.93% for PM0.3, PM0.5, and PM1, respectively), demonstrating robust filtration properties at high temperatures and high humidities. Our work provides a new approach for developing self-powered wearable healthcare devices with excellent air filtration properties.

7.
Mol Genet Genomic Med ; 12(2): e2361, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348997

RESUMEN

OBJECTIVE: We aimed to evaluate the genotype-phenotype relationship in two Chinese family members with enlarged vestibular aqueduct (EVA). METHODS: We collected blood samples and clinical data from each pedigree family member. Genomic DNA was isolated from peripheral leukocytes using standard methods. Targeted next-generation sequencing and Sanger sequencing were performed to find the pathogenic mutation in this family. Minigene assays were used to verify whether the novel intronic mutation SLC26A4c.765+4A>G influenced mRNA splicing. RESULTS: Hearing loss in the patients with EVA was diagnosed using auditory tests and imaging examinations. Two pathogenic mutations, c.765+4A>G and c.919-2A>G were detected in SLC26A4. In vitro minigene analysis confirmed that c.765+4A>G variant could cause aberrant splicing, resulting in skipping over exon 6. CONCLUSIONS: The SLC26A4c.765+4A>G mutation is the causative variant in the Chinese family with EVA. Particular attention should be paid to intronic variants.


Asunto(s)
Pérdida Auditiva Sensorineural , Proteínas de Transporte de Membrana , Hermanos , Acueducto Vestibular/anomalías , Humanos , Proteínas de Transporte de Membrana/genética , Mutación , China
8.
Oncoimmunology ; 13(1): 2298444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170154

RESUMEN

Bacteria-based cancer therapy employs various strategies to combat tumors, one of which is delivering tumor-associated antigen (TAA) to generate specific immunity. Here, we utilized a poly-arginine extended HPV E7 antigen (9RE7) for attachment on Salmonella SL7207 outer membrane to synthesize the bacterial vaccine Salmonella-9RE7 (Sal-9RE7), which yielded a significant improvement in the amount of antigen presentation compared to the previous lysine-extended antigen coating strategy. In TC-1 tumor mouse models, Sal-9RE7 monotherapy decreased tumor growth by inducing E7 antigen-specific immunity. In addition, pairing Sal-9RE7 with adjuvant Albumin-IFNß (Alb-IFNß), a protein cytokine fusion, the combination significantly increased the antitumor efficacy and enhanced immunogenicity in the tumor microenvironment (TME). Our study made a significant contribution to personalized bacterial immunotherapy via TAA delivery and demonstrated the advantage of combination therapy.


Asunto(s)
Interferón Tipo I , Neoplasias , Animales , Ratones , Proteínas E7 de Papillomavirus/genética , Linfocitos T CD8-positivos , Neoplasias/terapia , Antígenos de Neoplasias , Inmunoterapia , Salmonella , Microambiente Tumoral
9.
Anal Chem ; 96(6): 2387-2395, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38285925

RESUMEN

Highly sensitive and rapid measurement of food allergens is essential to avoid unanticipated food allergies and to determine whether cross-contamination occurs in the food industry. Commercial immunoassay kits offer high specificity and convenience for allergen detection but still suffer limited quantitative sensitivity, accuracy, and stability based on the optical readout. In this work, a paper-based mass spectrometric immunoassay platform was constructed to achieve facile and highly sensitive quantification of peanut allergen, which combined the advantages of good specificity and accurate quantification from mass spectrometry and simplicity from a paper-based immunoassay. In this platform, a novel quaternary ammonium-based mass tag and a paper chip with a microzone were designed and developed, contributing to a large signal enhancement. This method was able to detect Ara h1 with a linear range of 0.1-100 ng mL-1 and a detection limit of 0.08 ng mL-1 in milk matrices. It has also been successfully applied to the accurate quantification of Ara h1 in six milk-related beverages, two biscuits, and two candy bars with complicated matrices and presented a low-concentration quantitation capability. This method gives a new type of mass spectrometric immunoassay for rapid and ultrasensitive allergen regulation in the food industry and for individual allergen differentiation research.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Inmunoensayo/métodos , Alérgenos/análisis , Espectrometría de Masas , Arachis/química
10.
Small ; : e2308195, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072819

RESUMEN

Cellulose-based triboelectric nanogenerators (TENGs) have attracted widespread attention due to the low cost and environmentally friendly characteristics of cellulose. However, achieving high electrical energy output from these generators still presents significant challenges. Here, cellulose is dissolved-regenerated to form a composite aerogel with high specific surface area, in which cellulose-based composites with excellent negative triboelectric properties are developed by coupling the rich 3D network structure of the regenerated cellulose aerogel, modified barium titanate, and poly(vinylidene fluoride). The TENGs assembled from the composite materials exhibit an output voltage of 1040 V and a current of 1.165 mA at an external force of 8 N and a frequency of 4 Hz, outperforming all cellulose-based negative triboelectric materials. In addition, the nanogenerators have a stable electrical energy output capacity, with no significant property degradation in 100 000 contact-separation tests. The excellent electrical output property of the composite materials enables them to harvest energy from human movement and waterdrops, demonstrating their great application prospects in wearable devices, energy harvesting devices, self-powered sensors, and other fields.

11.
ACS Biomater Sci Eng ; 9(12): 6670-6682, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38019679

RESUMEN

Orb-weaving spiders can use an array of specialized silks with diverse mechanical properties and functions for daily survival. Of all spider silk types, aciniform silk is the toughest silk fiber that combines high strength and elasticity. Although aciniform spidroins (AcSp) are the main protein in aciniform silks, their complete genes have rarely been characterized until now. Moreover, the structural and physical properties of AcSp variant proteins within the species are also unclear. Here, we present three full-length AcSp genes (named AcSp1A, AcSp1B, and AcSp2) from the orb-weaving spider Neoscona theisi and investigate the structural and mechanical features of these three AcSp repetitive domains. We demonstrate that all three AcSp proteins have mainly α-helical structural features in neutral solution and high thermal stability. Significantly, the AcSp2 repetitive domain shows a pH-dependent structural transition from α to ß conformations and can self-assemble into amyloid fibrils under acidic conditions, which is the first reported AcSp repetitive domain with pH-dependent self-assembly capacity. Compared with the other two AcSp spidroins, AcSp2 demonstrated the lowest expression level in the aciniform gland but had the highest strength for its silk fiber. Collectively, our findings provide new insight into the physical properties of each component of aciniform silk and expand the repertoire of known spidroin sequences for the synthesis of artificial silk materials.


Asunto(s)
Fibroínas , Seda/química , Seda/genética , Elasticidad , Concentración de Iones de Hidrógeno
12.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398082

RESUMEN

The Ras/PI3K/ERK signaling network is frequently mutated in various human cancers including cervical cancer and pancreatic cancer. Previous studies showed that the Ras/PI3K/ERK signaling network displays features of excitable systems including propagation of activity waves, all-or-none responses, and refractoriness. Oncogenic mutations lead to enhanced excitability of the network. A positive feedback loop between Ras, PI3K, the cytoskeleton, and FAK was identified as a driver of excitability. In this study, we investigated the effectiveness of targeting signaling excitability by inhibiting both FAK and PI3K in cervical and pancreatic cancer cells. We found that the combination of FAK and PI3K inhibitors synergistically suppressed the growth of select cervical and pancreatic cancer cell lines through increased apoptosis and decreased mitosis. In particular, FAK inhibition caused downregulation of PI3K and ERK signaling in cervical cancer but not pancreatic cancer cells. Interestingly, PI3K inhibitors activated multiple receptor tyrosine kinases (RTKs), including insulin receptor and IGF-1R in cervical cancer cells, as well as EGFR, Her2, Her3, Axl, and EphA2 in pancreatic cancer cells. Our results highlight the potential of combining FAK and PI3K inhibition for treating cervical and pancreatic cancer, although appropriate biomarkers for drug sensitivity are needed, and concurrent targeting of RTKs may be required for resistant cells.

13.
Biochem Biophys Res Commun ; 655: 44-49, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36924678

RESUMEN

Conditional protein splicing is a powerful biotechnological tool that can be used to post-translationally control the activity of target proteins. Here we demonstrated a novel conditional protein splicing approach in which the small ubiquitin-like modifier (SUMO) protease induced the splicing of an atypical split intein. The engineered Ter DnaE-3 S11 split intein which has a small C-intein segment with only 6 amino acids was used in this study. A SUMO tag was fused to the N-terminus of the C-intein to inhibit the protein trans-splicing in vitro. The splicing products could be detected in 15 min with the addition of SUMO protease by western blotting and the splicing efficiency was ∼4-fold higher than the control without SUMO protease for overnight reaction. This engineered Ter DnaE-3 S11 split intein-mediated protein trans-splicing had been further shown to be triggered by SUMO protease in different exteins in vitro. Our study provides new insights into the regulation of protein splicing and is a promising tool for the control of protein structure and function in vitro.


Asunto(s)
Péptido Hidrolasas , Empalme de Proteína , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Ubiquitina/metabolismo , Inteínas , Proteínas/metabolismo , Endopeptidasas/metabolismo
14.
Acta Biomater ; 155: 282-291, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427684

RESUMEN

Spiders spin a great diversity of silk types for daily survival and reproduction. Of the six orb-weaver silk types, the dragline silk forming orb web frame attracts the most attention because of its extremely high tensile strength and toughness. So far, four types of major ampullate silk proteins (MaSp1-4) that make up dragline silk have been identified. These MaSp types have diversified amino acid motifs that underlie the impressive mechanical property of dragline silk by forming particular structures. Existing knowledge of MaSp4 proteins is fragmented, making it difficult to illuminate the structure and function of MaSp4. Here, we report the full-length MaSp4 gene with 11,334 bp from the orb-weaving spider Araneus ventricosus. Removing the only intron, the spliced complete transcript of MaSp4 gene is 6897 bp and encodes 2298 amino acids. Analysis of the primary structure of A. ventricosus MaSp4 protein reveals the repetitive region lacks poly-A and GGX motifs but has the unique GPGPQ motifs. Quantitative real-time PCR analyses show high levels of MaSp4 mRNA were detected in major ampullate gland. Structural characterization using CD- and FTIR sepctroscopy reveals a mainly α-helical solution conformation and a very high ß-turn content within fibers. Collectively, our new findings provide complete template for recombinant silk protein with specific properties and support that the GPGPQ motif found in MaSp4 could increase flexibility in dragline silk by packing in more ß-turns, expanding the repertoire of sequences known to form ß-turn that is available for artificial chimeric silk fibers. STATEMENT OF SIGNIFICANCE: Dragline silk forming orb web frame attracts the most attention because of its extremely high tensile strength and toughness. So far, four types of major ampullate silk proteins (MaSp1-4) that make up dragline silk have been identified. Existing knowledge of MaSp4 proteins is fragmented, making it difficult to illuminate the structure and function of MaSp4. Here, we report the full-length MaSp4 gene from the orb-weaving spider Araneus ventricosus. We further identify the sequence, structure, and mechanical property of MaSp4 protein, providing a new insight into the structure-funtion relationships associated with MaSp4. Collectively, our new findings provide complete template for recombinant silk protein with specific properties and support that the GPGPQ motif found in MaSp4 could increase flexibility in dragline silk by packing in more ß-turns, expanding the repertoire of sequences known to form ß-turn that is available for artificial chimeric silk fibers.


Asunto(s)
Fibroínas , Arañas , Animales , Seda/genética , Seda/química , Arañas/genética , Arañas/química , Aminoácidos , Resistencia a la Tracción , Fibroínas/genética , Fibroínas/química
15.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430534

RESUMEN

Biomaterial scaffolding serves as an important strategy in skin tissue engineering. In this research, recombinant spider silk protein (RSSP) and poly(L-lactide-co-ε-caprolactone) (PLCL) were blended in different ratios to fabricate nanofibrous membranes as potential skin regeneration scaffolds with an electro-spinning process. Scanning electron microscopy (SEM), water contact angles measurement, Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), tensile mechanical tests and thermo-gravimetric analysis (TGA) were carried out to characterize the nanofibrous membranes. The results showed that the blending of RSSP greatly decreased the nanofibers' average diameter, enhanced the hydrophilicity, changed the microstructure and thermal properties, and could enable tailored mechanical properties of the nanofibrous membranes. Among the blended membranes, the PLCL/RSSP (75/25) membrane was chosen for further investigation on biocompatibility. The results of hemolysis assays and for proliferation of human foreskin fibroblast cells (hFFCs) confirmed the membranes potential use as skin-regeneration scaffolds. Subsequent culture of mouse embryonic fibroblast cells (NIH-3T3) demonstrated the feasibility of the blended membranes as a human epidermal growth factor (hEGF) delivery matrix. The PLCL/RSSP (75/25) membrane possessed good properties comparable to those of human skin with high biocompatibility and the ability of hEGF delivery. Further studies can be carried out on such membranes with chemical or genetic modifications to make better scaffolds for skin regeneration.


Asunto(s)
Nanofibras , Animales , Humanos , Ratones , Nanofibras/química , Seda/química , Andamios del Tejido/química , Poliésteres/química , Proliferación Celular , Fibroblastos , Poli A
16.
J Biomed Sci ; 29(1): 57, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962391

RESUMEN

BACKGROUND: For centuries, microbial-based agents have been investigated as a therapeutic modality for the treatment of cancer. In theory, these methods would be cheap to produce, broadly applicable in a wide array of cancer types, and could synergize with other cancer treatment strategies. We aimed to assess the efficacy of combining microbial-based therapy using Salmonella SL7207 with interleukin-2 (IL-2), a potent immunostimulatory agent, in the treatment of murine colon carcinoma. METHODS: Female BALB/c mice were implanted subcutaneously with CT26 tumors, a model of colon carcinoma. Mice bearing tumors were selected and administered Albumin-IL-2 (Alb-IL2), a fusion protein, for further analysis of anticancer effect. RESULTS: We demonstrated that Salmonella SL7207, a genetically modified strain of Salmonella enterica serovar Typhimurium, preferentially accumulates in the tumor microenvironment, potentiating it to stimulate localized innate immunity. We delivered IL-2 as a fusion protein, Alb-IL2, which we demonstrate to have preferential accumulation properties, bringing it to the tumor and secondary lymphoid organs. Treatment of tumor-bearing mice with Salmonella + Alb-IL2 leads to superior tumor control and enhanced overall survival compared to controls. When assessing immunological factors contributing to our observed tumor control, significantly enhanced T cell population with superior effector function was observed in mice treated with Salmonella + Alb-IL2. We confirmed that these T cells were indispensable to the observed tumor control through antibody-mediated T cell depletion experiments. CONCLUSIONS: These findings highlight the ability of Salmonella + Alb-IL2 to serve as a novel therapeutic approach to induce T cell-mediated antitumor immunity and exert long-term tumor control in a murine model of cancer.


Asunto(s)
Carcinoma , Neoplasias del Colon , Albúminas , Animales , Femenino , Interleucina-2 , Ratones , Salmonella , Microambiente Tumoral
17.
Signal Transduct Target Ther ; 6(1): 421, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34916485

RESUMEN

Hepatocellular carcinoma (HCC) is the global leading cause of cancer-related deaths due to the deficiency of targets for precision therapy. A new modality of epigenetic regulation has emerged involving RNA-RNA crosstalk networks where two or more competing endogenous RNAs (ceRNAs) bind to the same microRNAs. However, the contribution of such mechanisms in HCC has not been well studied. Herein, potential HMGB1-driven RNA-RNA crosstalk networks were evaluated at different HCC stages, identifying the mTORC2 component RICTOR as a potential HMGB1 ceRNA in HBV+ early stage HCC. Indeed, elevated HMGB1 mRNA was found to promote the expression of RICTOR mRNA through competitively binding with the miR-200 family, especially miR-429. Functional assays employing overexpression or interference strategies demonstrated that the HMGB1 and RICTOR 3'untranslated regions (UTR) epigenetically promoted the malignant proliferation, self-renewal, and tumorigenesis in HCC cells. Intriguingly, interference against HMGB1 and RICTOR in HCC cells promoted a stronger anti-PD-L1 immunotherapy response, which appeared to associate with the production of PD-L1+ exosomes. Mechanistically, the HMGB1-driven RNA-RNA crosstalk network facilitated HCC cell glutamine metabolism via dual mechanisms, activating a positive feedback loop involving mTORC2-AKT-C-MYC to upregulate glutamine synthetase (GS) expression, and inducing mTORC1 signaling to derepress SIRT4 on glutamate dehydrogenase (GDH). Meanwhile, this crosstalk network could impede the efficacy of immunotherapy through mTORC1-P70S6K dependent PD-L1 production and PD-L1+ exosomes activity. In conclusion, our study highlights the non-coding regulatory role of HMGB1 with implications for RNA-based therapeutic targeting together with a prediction of anti-PD-L1 immunotherapy in HCC.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Glutamina/metabolismo , Proteína HMGB1/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Animales , Antígeno B7-H1/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Glutamina/genética , Proteína HMGB1/genética , Inmunoterapia , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/terapia , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/genética
18.
Ann Transl Med ; 9(17): 1374, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34733926

RESUMEN

BACKGROUND: Gallbladder carcinoma (GBC) remains a highly lethal disease worldwide. MiR-552 family members promote the malignant progression of a variety of digestive system tumors, but the role of miR-552-3p in GBC has not been elucidated. miR-552-3p was predicted to target the 3'-untranslated region (3'UTR) of the mRNA for the tumor suppressor gene "repulsive guidance molecule BMP co-receptor a" (RGMA). The aim of the present study was to clarify the roles and mechanisms of miR-552-3p targeting RGMA in the malignant progression of GBC. METHODS: In vitro: expression of miR-552-3p was detected by real-time quantitative PCR (qRT-PCR) in tumor and non-tumor adjacent tissues (NATs). Lentivirus-miR-552-3p was employed to knockdown this miRNA in GBC cell lines. Stem cell-related transcription factors and markers were assessed by qRT-PCR. Cell Counting Kit-8 (CCK-8), sphere formation and transwell assays were used to determine the malignant phenotypes of GBC cells. Targeting the 3'UTR of RGMA by miR-552-3p was verified by integrated analysis including bioinformatics prediction, luciferase assays, measures of changes of gene expression and rescue experiments. In vivo: mouse models of subcutaneous tumors and lung metastases were established to observe the effect of miR-552-3p on tumorigenesis and organ metastasis, respectively. RESULTS: MiR-552-3p was abnormally highly expressed in GBC tissues and cancer stem cells. Interference with miR-552-3p in SGC-996 and GBC-SD cells significantly inhibited GBC stem cell expansion. Reciprocally, miR-552-3p promoted GBC cell proliferation, migration and invasion both in vitro and in vivo; hence, interference with this miRNA impeded the malignant progression of GBC. Furthermore, the important tumor suppressor gene RGMA was identified as a target of miR-552-3p. The effects of miR-552-3p on cell proliferation and metastasis were abrogated or enhanced by gain or loss of RGMA function, respectively. Mechanistically, miR-552-3p promoted GBC progression by reactivating the Akt/ß-catenin pathway and epithelial-mesenchymal transformation (EMT). Clinically, miR-552-3p correlated with multi-malignant characteristics of GBC and acted as a prognostic marker for GBC outcome. CONCLUSIONS: MiR-552-3p promotes the malignant progression of GBC by inhibiting the mRNA of the tumor suppressor gene RGMA, resulting in reactivation of the Akt/ß-catenin signaling pathway.

19.
Int J Biol Macromol ; 186: 40-46, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34246886

RESUMEN

Atypical S1 and S11 split inteins have been used for N-terminal or C-terminal protein labeling. Here we reported a novel site-specific internal protein labeling method based on two atypical split inteins, Ter DnaE3 S11 and Rma DnaB S1. Protein-peptide trans-splicing activity was first demonstrated in vitro between a short peptide (Flag tag, FLAG) and two recombinant proteins (Maltose binding protein, MBP, and Thioredoxin, Trx) by trans-splicing between MBP-TE3S11N (MBP-N fragment of Ter DnaE3 S11), TE3S11C-FLAG-RBS1N (C fragment of Ter DnaE3 S11-FLAG-N fragment of Rma DnaB S1), and RBS1C-Trx (C fragment of Rma DnaB S1-Trx). To minimize the middle synthetic peptide (TE3S11C-linker-RBS1N), we reduced the number of native extein amino acids, which may play a role in protein trans-splicing. The results showed at least 3 (CKG) native extein amino acids were required for detectable trans-splicing activity. This method was further demonstrated to be effective in facilitating the incorporation of fluorescent probe (FITC) to the internal site of recombinant protein, generating the FITC-labeled protein. Besides the fluorescent group, these two split inteins can also be useful for adding any desirable chemical groups into a protein of interest, which may include biotin, modified and unnatural amino acids, or drug molecules.


Asunto(s)
Fluoresceína-5-Isotiocianato/química , Inteínas , Proteínas de Unión a Maltosa/química , Oligopéptidos/química , Ingeniería de Proteínas , Empalme de Proteína , Tiorredoxinas/química , Trans-Empalme , Proteínas de Unión a Maltosa/genética , Oligopéptidos/genética , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA