Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(35): 46280-46288, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39162615

RESUMEN

Layered materials have emerged as stars in the realm of nanomaterials, showcasing exceptional versatility in various fields. This investigation employed a thermally driven method to intercalate cobalt (Co) into the van der Waals gaps of (CuI)0.002Bi2Te2.7Se0.3 crystals and investigated the mechanism by which the intercalated Co enhances the thermoelectric performance of the material. Co intercalation decreases the carrier concentration, thereby improving the Seebeck coefficient and decreasing both the mobility and the electrical conductivity. These effects result in a significant enhancement of the power factor above 400 K. Theoretical electronic structure calculations provide insights into the role of Co in this material. Additionally, the presence of intercalated Co significantly enhances phonon scattering, thereby boosting the thermoelectric figure-of-merit, ZT to 1.33 at 350 K for 0.17% Co intercalation. These findings highlight the potential of Co incorporation for improving the thermoelectric energy efficiency of n-type Bi2Te2.7Se0.3, offering avenues for further optimization in thermoelectric applications.

2.
ACS Appl Mater Interfaces ; 16(31): 41495-41503, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39069916

RESUMEN

This study explores the utilization of the organic conductive molecule Polypyrrole (PPy) for the modification of Indium Gallium Zinc Oxide (IGZO) nanoparticles, aiming to develop highly sensitive ozone sensors. Pyrrole (Py) molecules undergo polymerization, resulting in the formation of extended chains of PPy that graft onto the surface of IGZO nanoparticles. This interaction effectively diminishes oxygen vacancies on the IGZO surface, thereby promoting the crystallization of the IGZO (1114) facets. The resultant structure exhibits promising potential for achieving high-performance wideband semiconductor gas sensors. The IGZO/PPy device forms a Straddling Gap heterojunction, facilitating enhanced electron transfer between IGZO and ozone molecules. Notably, the adsorption and desorption of ozone gas occur efficiently at a low temperature of approximately 25 °C, obviating the need for additional energy typically associated with wide bandgap semiconductor materials. Density Functional Theory (DFT) calculations attribute this efficiency to the enhanced number of active sites for ozone adsorption, facilitated by hydrogen bonds. The substantial conductivity of PPy, combined with its planar ring structure, induces positively charged polarization on the IGZO side upon ozone adsorption. The resultant device exhibits exceptional sensitivity, boasting a 4-fold improvement compared to sensors reliant solely on IGZO. Additionally, the response time is significantly reduced by a factor of 10, underscoring the practical viability and enhanced performance of the IGZO/PPy sensor field.

3.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727342

RESUMEN

Thermoelectric power can convert heat and electricity directly and reversibly. Low-dimensional thermoelectric materials, particularly thin films, have been considered a breakthrough for separating electronic and thermal transport relationships. In this study, a series of Bi0.5Sb1.5Te3 thin films with thicknesses of 0.125, 0.25, 0.5, and 1 µm have been fabricated by RF sputtering for the study of thickness effects on thermoelectric properties. We demonstrated that microstructure (texture) changes highly correlate with the growth thickness in the films, and equilibrium annealing significantly improves the thermoelectric performance, resulting in a remarkable enhancement in the thermoelectric performance. Consequently, the 0.5 µm thin films achieve an exceptional power factor of 18.1 µWcm-1K-2 at 400 K. Furthermore, we utilize a novel method that involves exfoliating a nanosized film and cutting with a focused ion beam, enabling precise in-plane thermal conductivity measurements through the 3ω method. We obtain the in-plane thermal conductivity as low as 0.3 Wm-1K-1, leading to a maximum ZT of 1.86, nearing room temperature. Our results provide significant insights into advanced thin-film thermoelectric design and fabrication, boosting high-performance systems.

4.
ACS Appl Mater Interfaces ; 16(3): 3520-3531, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38194411

RESUMEN

Mg-Sn alloy thin films have garnered significant attention for their outstanding thermoelectric (TE) properties and cost-effective elemental composition, making them potential candidates for wearable energy harvesting devices. While previous studies have explored the properties of these thin films, limited research has been conducted to identify physical factors that can further enhance their performance. In this study, we present a novel approach utilizing a convenient electron beam coevaporation technique to fabricate Mg-Sn alloy thin films. Experimental results revealed that controlling the tin content in the Mg-Sn thin films at 38.9% led to the formation of a mixed-phase structure, comprising Mg2Sn and Mg9Sn5. This dual-phase structure exhibited a notable advantage in enhancing the TE performance. The presence of the Mg9Sn5 phase significantly increased the carrier concentration, while maintaining the original Seebeck coefficient and mobility, thereby improving the conductivity of Mg2Sn. Theoretical calculations indicated that the Mg9Sn5 phase displayed 1D-like characteristics, leading to a highly effective valley degeneracy and consequently a high power factor. Overall, this work introduces a promising approach to fabricate high-performance Mg-Sn alloy thin films through electron beam coevaporation, opening up possibilities for their application in wearable energy harvesting devices.

5.
Adv Sci (Weinh) ; 9(20): e2201353, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35478495

RESUMEN

Bismuth telluride-based thermoelectric (TE) materials are historically recognized as the best p-type (ZT = 1.8) TE materials at room temperature. However, the poor performance of n-type (ZT≈1.0) counterparts seriously reduces the efficiency of the device. Such performance imbalance severely impedes its TE applications either in electrical generation or refrigeration. Here, a strategy to boost n-type Bi2 Te2.7 Se0.3 crystals up to ZT = 1.42 near room temperature by a two-stage process is reported, that is, step 1: stabilizing Seebeck coefficient by CuI doping; step 2: boosting power factor (PF) by synergistically optimizing phonon and carrier transport via thermal-driven Cu intercalation in the van der Waals (vdW) gaps. Theoretical ab initio calculations disclose that these intercalated Cu atoms act as modulation doping and contribute conduction electrons of wavefunction spatially separated from the Cu atoms themselves, which simultaneously lead to large carrier concentration and high mobility. As a result, an ultra-high PF ≈63.5 µW cm-1 K-2 at 300 K and a highest average ZT = 1.36 at 300-450 K are realized, which outperform all n-type bismuth telluride materials ever reported. The work offers a new approach to improving n-type layered TE materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...