Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phycol ; 60(4): 942-955, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39016211

RESUMEN

Neoporphyra haitanensis, a red alga harvested for food, thrives in the intertidal zone amid dynamic and harsh environments. High irradiance represents a major stressor in this habitat, posing a threat to the alga's photosynthetic apparatus. Interestingly, N. haitanensis has adapted to excessive light despite the absence of a crucial xanthophyll cycle-dependent photoprotection pathway. Thus, it is valuable to investigate the mechanisms by which N. haitanensis copes with excessive light and to understand the photoprotective roles of carotenoids. Under high light intensities and prolonged irradiation time, N. haitanensis displayed reduction in photosynthetic efficiency and phycobiliproteins levels, as well as different responses in carotenoids. The decreased carotene contents suggested their involvement in the synthesis of xanthophylls, as evidenced by the up-regulation of lycopene-ß-cyclase (lcyb) and zeaxanthin epoxidase (zep) genes. Downstream xanthophylls such as lutein, zeaxanthin, and antheraxanthin increased proportionally to light stress, potentially participating in scavenging reactive oxygen species (ROS). When accompanied by the enhanced activity of ascorbate peroxidase (APX), these factors resulted in a reduction in ROS production. The responses of intermediates α-cryptoxanthin and ß-cryptoxanthin were felt somewhere between carotenes and zeaxanthin/lutein. Furthermore, these changes were ameliorated when the organism was placed in darkness. In summary, down-regulation of the organism's photosynthetic capacity, coupled with heightened xanthophylls and APX activity, activates photoinhibition quenching (qI) and antioxidant activity, helping N. haitanensis to protect the organism from the damaging effects of excessive light exposure. These findings provide insights into how red algae adapt to intertidal lifestyles.


Asunto(s)
Carotenoides , Luz , Fotosíntesis , Rhodophyta , Rhodophyta/fisiología , Rhodophyta/metabolismo , Carotenoides/metabolismo , Xantófilas/metabolismo , Estrés Fisiológico
2.
Food Chem ; 460(Pt 1): 140468, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053276

RESUMEN

Porphyra sensu lato, a highly valuable edible seaweed renowned for its distinctive umami taste, undergoes significant taste variations during the harvest cycle, affecting product quality and pricing. In this study, umami-related metabolites in Pyropia haitanensis were investigated at different harvesting times using GC-MS metabolomic, targeted LC-MS analysis, and an electronic tongue taste evaluation. High concentrations of compounds, including glutamic acid, aspartic acid, and inosine 5'-monophosphate, were identified as the main contributors to the overall umami profile. The concentrations of the compounds and umami-enhancing substances, such as sugars, were negatively correlated as the harvesting period extended. The early harvested P. haitanensis exhibited a superior umami taste, which gradually decreased with subsequent harvest time. Proline, a known cold-resistance metabolite, accumulated as the seawater temperature decreased and the harvest period progressed. These findings provide insights into the optimal cultivation and harvesting practices for maintaining umami quality in P. haitanensis products.

3.
Front Plant Sci ; 15: 1379428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533401

RESUMEN

The Bangiales represent an ancient lineage within red algae that are characterized by a life history featuring a special transitional stage from diploid to haploid known as the conchosporangia stage. However, the regulatory mechanisms governing the initiation of this stage by changes in environmental conditions are not well understood. This study analyzed the changes in phytohormones and H2O2 content during the development of conchosporangia. It also compared the gene expression changes in the early development of conchosporangia through transcriptome analysis. The findings revealed that H2O2 was shown to be the key signal initiating the transition from conchocelis to conchosporangia in Pyropia haitanensis. Phytohormone analysis showed a significant increase in 1-aminocylopropane-1-carboxylic acid (ACC) levels during conchosporangia maturation, while changes in environmental conditions were found to promote the rapid release of H2O2. H2O2 induction led to conchosporangia development, and ACC enhanced both H2O2 production and conchosporangia development. This promotive effect was inhibited by the NADPH oxidase inhibitor diphenylene iodonium and the H2O2 scavenger N, N'-dimethylthiourea. The balance of oxidative-antioxidative mechanisms was maintained by regulating the activities and transcriptional levels of enzymes involved in H2O2 production and scavenging. Transcriptome analysis in conjunction with evaluation of enzyme and transcription level changes revealed upregulation of protein and sugar synthesis along with modulation of energy supply under the conditions that induced maturation, and exogenous ACC was found to enhance the entire process. Overall, this study demonstrates that ACC enhances H2O2 promotion of the life cycle switch responsible for the transition from a vegetative conchocelis to a meiosis-preceding conchosporangia stage in Bangiales species.

4.
BMC Plant Biol ; 22(1): 168, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35369869

RESUMEN

BACKGROUND: Seaweeds in the upper intertidal zone experience extreme desiccation during low tide, followed by rapid rehydration during high tide. Porphyra sensu lato are typical upper intertidal seaweeds. Therefore, it is valuable to investigate the adaptive mechanisms of seaweed in response to dehydration-rehydration stress. RESULTS: A reduction in photosynthetic capacity and cell shrinkage were observed when N. haitanensis was dehydrated, and such changes were ameliorated once rehydrated. And the rate and extent of rehydration were affected by the air flow speed, water content before rehydration, and storage temperature and time. Rapid dehydration at high air-flow speed and storage at - 20 °C with water content of 10% caused less damage to N. haitanensis and better-protected cell activity. Moreover, proteomic and metabolomic analyses revealed the abundance members of the differentially expressed proteins (DEPs) and differentially abundant metabolites (DAMs) mainly involved in antioxidant system and osmotic regulation. The ascorbic acid-glutathione coupled with polyamine antioxidant system was enhanced in the dehydration response of N. haitanensis. The increased soluble sugar content, the accumulated polyols, but hardly changed (iso)floridoside and insignificant amount of sucrose during dehydration indicated that polyols as energetically cheaper organic osmolytes might help resist desiccation. Interestingly, the recovery of DAMs and DEPs upon rehydration was fast. CONCLUSIONS: Our research results revealed that rapid dehydration and storage at - 20 °C were beneficial for recovery of N. haitanensis. And the strategy to resist dehydration was strongly directed toward antioxidant activation and osmotic regulation. This work provided valuable insights into physiological changes and adaptative mechanism in desiccation, which can be applied for seaweed farming.


Asunto(s)
Deshidratación , Rhodophyta , Fluidoterapia , Fotosíntesis/fisiología , Proteómica , Rhodophyta/fisiología
5.
BMC Plant Biol ; 22(1): 114, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287582

RESUMEN

BACKGROUND: Red algae Porphyra sensu lato grow naturally in the unfavorable intertidal environment, in which they are exposed to substantial temperature fluctuations. The strategies of Porphyra to tolerate cold stress are poorly understood. RESULTS: Herein, investigations revealed that chilling and freezing induced alterations in the physiological properties, gene transcriptional profiles and metabolite levels in the economically important red algae species, Neoporphyra haitanensis. Control samples (kept at 20 °C) were compared to chilled thalli (10 and 4 °C) and to thalli under - 4 °C conditions. Chilling stress did not affect the health or photosynthetic efficiency of gametophytes, but freezing conditions resulted in the arrest of growth, death of some cells and a decrease in photosynthetic activity as calculated by Fv/Fm. Transcriptome sequencing analysis revealed that the photosynthetic system was down-regulated along with genes associated with carbon fixation and primary metabolic biosynthesis. Adaptive mechanisms included an increase in unsaturated fatty acids levels to improve membrane fluidity, an increase in floridoside and isofloridoside content to enhance osmotic resistance, and an elevation in levels of some resistance-associated phytohormones (abscisic acid, salicylic acid, and methyl jasmonic acid). These physiochemical alterations occurred together with the upregulation of ribosome biogenesis. CONCLUSIONS: N. haitanensis adopts multiple protective mechanisms to maintain homeostasis of cellular physiology in tolerance to cold stress.


Asunto(s)
Respuesta al Choque por Frío , Rhodophyta , Frío , Perfilación de la Expresión Génica , Fotosíntesis , Rhodophyta/metabolismo
6.
Mitochondrial DNA B Resour ; 6(1): 278-279, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33553644

RESUMEN

Sargassum hemiphyllum (Turner) C. Agardh is an important brown macroalga. In this study, we presented the complete chloroplast genome of its variety S. hemiphyllum var. chinense using genome skimming approach. Circular mapping revealed its sequence length was 124,319 bp, with a large single-copy region (LSC, 73,505 bp) and a small single copy region (SSC, 39,922 bp) separated by a pair of inverted repeats (IRs, 5446 bp). Its chloroplast genome contained 173 genes, including 139 protein-coding, 6 rRNA, and 28 tRNA genes. The phylogenetic analysis indicated that S. hemiphyllum var. chinense was closely related with S. confusum.

7.
Huan Jing Ke Xue ; 36(2): 530-6, 2015 Feb.
Artículo en Chino | MEDLINE | ID: mdl-26031079

RESUMEN

Nanoscale zero-valent iron supported on Sargassum horneri activated carbon (NZVI/SAC) was synthesized by zinc chloride activation and incipient wetness method, and characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). XRD confirmed the existence of nano zero-valent iron, and SEM revealed that the material consisted of mainly 30-150 nm spherical particles aggregated into chains of individual units. The valence state of iron conformed with the nuclear-shell model. The effects of NZVI loading on AC, pH and the initial concentration of Cr(VI) on the removal of Cr(VI) were investigated. The final Cr(VI) removal percentage was up to 100% under the following conditions: 30 degrees C, pH = 2, NZVI/SAC dosage of 2 g x L(-1) and the amounts of NZVI loaded on SAC of 30%. And the equilibrium time was 10 minutes. These results showed that NZVI/SAC could be potentially applied for removal of high concentration Cr(VI). By analyzing the chemical change of NZVI/ SAC, we demonstrated that Cr(VI) was mainly reduced to insoluble Cr (III) compound in the reaction when pH was less than 4, and adsorbed by NZVI and SAC when pH was over 4.


Asunto(s)
Carbón Orgánico/química , Cromo/aislamiento & purificación , Hierro/química , Sargassum , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...