Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
PLoS Genet ; 19(2): e1010621, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36735729

RESUMEN

Symbiotic interactions between rhizobia and legumes result in the formation of root nodules, which fix nitrogen that can be used for plant growth. Rhizobia usually invade legume roots through a plant-made tunnel-like structure called an infection thread (IT). RPG (Rhizobium-directed polar growth) encodes a coiled-coil protein that has been identified in Medicago truncatula as required for root nodule infection, but the function of RPG remains poorly understood. In this study, we identified and characterized RPG in Lotus japonicus and determined that it is required for IT formation. RPG was induced by Mesorhizobium loti or purified Nodulation factor and displayed an infection-specific expression pattern. Nodule inception (NIN) bound to the RPG promoter and induced its expression. We showed that RPG displayed punctate subcellular localization in L. japonicus root protoplasts and in root hairs infected by M. loti. The N-terminal predicted C2 lipid-binding domain of RPG was not required for this subcellular localization or for function. CERBERUS, a U-box E3 ligase which is also required for rhizobial infection, was found to be localized similarly in puncta. RPG co-localized and directly interacted with CERBERUS in the early endosome (TGN/EE) compartment and near the nuclei in root hairs after rhizobial inoculation. Our study sheds light on an RPG-CERBERUS protein complex that is involved in an exocytotic pathway mediating IT elongation.


Asunto(s)
Lotus , Rhizobium , Rhizobium/genética , Lotus/genética , Lotus/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiosis/genética , Regulación de la Expresión Génica de las Plantas , Nódulos de las Raíces de las Plantas/genética , Raíces de Plantas
3.
Nat Commun ; 14(1): 876, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797319

RESUMEN

Grass pea (Lathyrus sativus L.) is a rich source of protein cultivated as an insurance crop in Ethiopia, Eritrea, India, Bangladesh, and Nepal. Its resilience to both drought and flooding makes it a promising crop for ensuring food security in a changing climate. The lack of genetic resources and the crop's association with the disease neurolathyrism have limited the cultivation of grass pea. Here, we present an annotated, long read-based assembly of the 6.5 Gbp L. sativus genome. Using this genome sequence, we have elucidated the biosynthetic pathway leading to the formation of the neurotoxin, ß-L-oxalyl-2,3-diaminopropionic acid (ß-L-ODAP). The final reaction of the pathway depends on an interaction between L. sativus acyl-activating enzyme 3 (LsAAE3) and a BAHD-acyltransferase (LsBOS) that form a metabolon activated by CoA to produce ß-L-ODAP. This provides valuable insight into the best approaches for developing varieties which produce substantially less toxin.


Asunto(s)
Aminoácidos Diaminos , Lathyrus , Lathyrus/genética , Lathyrus/metabolismo , Aminoácidos Diaminos/metabolismo , Neurotoxinas/metabolismo , Genómica
4.
Carbohydr Polym ; 288: 119386, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35450647

RESUMEN

A set of mutant pea lines carrying induced mutations within the major seed-expressed starch-branching enzyme gene has been characterised at the molecular, chemical and agronomic levels. Eight of the induced mutations, three of which predicted a premature stop codon, were compared with the naturally occurring starch-branching enzyme mutation within the same genetic background. Starch, amylose and sugar measurements, coupled with analysis by ultra-high performance liquid chromatography-size exclusion chromatography of starches, identified a range of phenotypes which were grouped according to the nature of the mutation. Homology modelling of proteins supported the differences in phenotypes observed. Differences in field performance were evident for selected mutants, particularly in seed yield and mean seed weight traits for early compared with late spring sowings. The data show the potential of an allelic series of mutants at this locus for nutritional studies. CHEMICAL COMPOUNDS: starch, amylose, amylopectin, raffinose, stachyose, verbascose.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Amilopectina/química , Amilosa/química , Pisum sativum/genética , Pisum sativum/metabolismo , Fenotipo , Semillas/genética , Semillas/metabolismo , Almidón/química
5.
J Exp Bot ; 72(5): 1850-1863, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33378456

RESUMEN

Plant roots depend on sucrose imported from leaves as the substrate for metabolism and growth. Sucrose and hexoses derived from it are also signalling molecules that modulate growth and development, but the importance for signalling of endogenous changes in sugar levels is poorly understood. We report that reduced activity of cytosolic invertase, which converts sucrose to hexoses, leads to pronounced metabolic, growth, and developmental defects in roots of Arabidopsis (Arabidopsis thaliana) seedlings. In addition to altered sugar and downstream metabolite levels, roots of cinv1 cinv2 mutants have reduced elongation rates, cell and meristem size, abnormal meristematic cell division patterns, and altered expression of thousands of genes of diverse functions. Provision of exogenous glucose to mutant roots repairs relatively few of the defects. The extensive transcriptional differences between mutant and wild-type roots have hallmarks of both high sucrose and low hexose signalling. We conclude that the mutant phenotype reflects both low carbon availability for metabolism and growth and complex sugar signals derived from elevated sucrose and depressed hexose levels in the cytosol of mutant roots. Such reciprocal changes in endogenous sucrose and hexose levels potentially provide rich information about sugar status that translates into flexible adjustments of growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidrólisis , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Sacarosa
6.
PLoS Genet ; 16(12): e1009249, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370251

RESUMEN

Karrikins (KARs), smoke-derived butenolides, are perceived by the α/ß-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) and thought to mimic endogenous, yet elusive plant hormones tentatively called KAI2-ligands (KLs). The sensitivity to different karrikin types as well as the number of KAI2 paralogs varies among plant species, suggesting diversification and co-evolution of ligand-receptor relationships. We found that the genomes of legumes, comprising a number of important crops with protein-rich, nutritious seed, contain two or more KAI2 copies. We uncover sub-functionalization of the two KAI2 versions in the model legume Lotus japonicus and demonstrate differences in their ability to bind the synthetic ligand GR24ent-5DS in vitro and in genetic assays with Lotus japonicus and the heterologous Arabidopsis thaliana background. These differences can be explained by the exchange of a widely conserved phenylalanine in the binding pocket of KAI2a with a tryptophan in KAI2b, which arose independently in KAI2 proteins of several unrelated angiosperms. Furthermore, two polymorphic residues in the binding pocket are conserved across a number of legumes and may contribute to ligand binding preferences. The diversification of KAI2 binding pockets suggests the occurrence of several different KLs acting in non-fire following plants, or an escape from possible antagonistic exogenous molecules. Unexpectedly, L. japonicus responds to diverse synthetic KAI2-ligands in an organ-specific manner. Hypocotyl growth responds to KAR1, KAR2 and rac-GR24, while root system development responds only to KAR1. This differential responsiveness cannot be explained by receptor-ligand preferences alone, because LjKAI2a is sufficient for karrikin responses in the hypocotyl, while LjKAI2a and LjKAI2b operate redundantly in roots. Instead, it likely reflects differences between plant organs in their ability to transport or metabolise the synthetic KLs. Our findings provide new insights into the evolution and diversity of butenolide ligand-receptor relationships, and open novel research avenues into their ecological significance and the mechanisms controlling developmental responses to divergent KLs.


Asunto(s)
Proteínas de Arabidopsis/genética , Furanos/metabolismo , Hidrolasas/genética , Hipocótilo/crecimiento & desarrollo , Lotus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Piranos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Furanos/química , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas/genética , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Hidrolasas/metabolismo , Hipocótilo/metabolismo , Lactonas/metabolismo , Ligandos , Lotus/genética , Análisis por Micromatrices , Filogenia , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/genética , Raíces de Plantas/metabolismo , Piranos/química
7.
BMC Plant Biol ; 19(1): 489, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718544

RESUMEN

BACKGROUND: Grass pea (Lathyrus sativus) is an underutilised crop with high tolerance to drought and flooding stress and potential for maintaining food and nutritional security in the face of climate change. The presence of the neurotoxin ß-L-oxalyl-2,3-diaminopropionic acid (ß-L-ODAP) in tissues of the plant has limited its adoption as a staple crop. To assist in the detection of material with very low neurotoxin toxin levels, we have developed two novel methods to assay ODAP. The first, a version of a widely used spectrophotometric assay, modified for increased throughput, permits rapid screening of large populations of germplasm for low toxin lines and the second is a novel, mass spectrometric procedure to detect very small quantities of ODAP for research purposes and characterisation of new varieties. RESULTS: A plate assay, based on an established spectrophotometric method enabling high-throughput ODAP measurements, is described. In addition, we describe a novel liquid chromatography mass spectrometry (LCMS)-based method for ß-L-ODAP-quantification. This method utilises an internal standard (di-13C-labelled ß-L-ODAP) allowing accurate quantification of ß-L-ODAP in grass pea tissue samples. The synthesis of this standard is also described. The two methods are compared; the spectrophotometric assay lacked sensitivity and detected ODAP-like absorbance in chickpea and pea whereas the LCMS method did not detect any ß-L-ODAP in these species. The LCMS method was also used to quantify ß-L-ODAP accurately in different tissues of grass pea. CONCLUSIONS: The plate-based spectrophotometric assay allows quantification of total ODAP in large numbers of samples, but its low sensitivity and inability to differentiate α- and ß-L-ODAP limit its usefulness for accurate quantification in low-ODAP samples. Coupled to the use of a stable isotope internal standard with LCMS that allows accurate quantification of ß-L-ODAP in grass pea samples with high sensitivity, these methods permit the identification and characterisation of grass pea lines with a very low ODAP content. The LCMS method is offered as a new 'gold standard' for ß-L-ODAP quantification, especially for the validation of existing and novel low- and/or zero-ß-L-ODAP genotypes.


Asunto(s)
Aminoácidos Diaminos/análisis , Lathyrus/química , Neurotoxinas/análisis , Cromatografía Liquida/economía , Cromatografía Liquida/métodos , Costos y Análisis de Costo , Marcaje Isotópico , Lathyrus/genética , Espectrometría de Masas/economía , Espectrometría de Masas/métodos , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrofotometría/economía , Espectrofotometría/métodos , Factores de Tiempo
8.
Elife ; 62017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28726631

RESUMEN

Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and accumulation of emblematic fungal 16:1ω5 FAs. Using isotopolog profiling we demonstrate that 13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled by sugars but depends on lipid transfer from plant hosts.


Asunto(s)
Ácidos Grasos/análisis , Metabolismo de los Lípidos , Lotus/metabolismo , Lotus/microbiología , Micorrizas/crecimiento & desarrollo , Micorrizas/metabolismo , Transporte Biológico , Isótopos de Carbono/análisis , Marcaje Isotópico , Micorrizas/química , Simbiosis
9.
New Phytol ; 215(1): 323-337, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28503742

RESUMEN

Bacterial accommodation inside living plant cells is restricted to the nitrogen-fixing root nodule symbiosis. In many legumes, bacterial uptake is mediated via tubular structures called infection threads (ITs). To identify plant genes required for successful symbiotic infection, we screened an ethyl methanesulfonate mutagenized population of Lotus japonicus for mutants defective in IT formation and cloned the responsible gene, ERN1, encoding an AP2/ERF transcription factor. We performed phenotypic analysis of two independent L. japonicus mutant alleles and investigated the regulation of ERN1 via transactivation and DNA-protein interaction assays. In ern1 mutant roots, nodule primordia formed, but most remained uninfected and bacterial entry via ITs into the root epidermis was abolished. Infected cortical nodule cells contained bacteroids, but transcellular ITs were rarely observed. A subset exhibited localized cell wall degradation and loss of cell integrity associated with bacteroid spread into neighbouring cells and the apoplast. Functional promoter studies revealed that CYCLOPS binds in a sequence-specific manner to a motif within the ERN1 promoter and in combination with CCaMK positively regulates ERN1 transcription. We conclude that the activation of ERN1 by CCaMK/CYCLOPS complex is an important step controlling IT-mediated bacterial progression into plant cells.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lotus/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Resistencia a la Enfermedad/genética , Estudios de Asociación Genética , Lotus/inmunología , Lotus/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas , Rhizobiaceae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
PLoS Genet ; 11(10): e1005623, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517270

RESUMEN

Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor.


Asunto(s)
Lotus/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/genética , Arabidopsis/genética , Fabaceae/genética , Fabaceae/microbiología , Regulación de la Expresión Génica de las Plantas , Lotus/microbiología , Mesorhizobium/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/biosíntesis , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Simbiosis/genética
11.
Plant J ; 79(2): 299-311, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24861854

RESUMEN

Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α-hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific ß-glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non-cyanogenic γ- and ß-hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only ß-glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site-directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non-flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic ß-glucosidase, resembling BGD2, and required no more than a single amino acid substitution.


Asunto(s)
Glicósidos/metabolismo , Lotus/enzimología , Lotus/metabolismo , beta-Glucosidasa/metabolismo , Sustitución de Aminoácidos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plant Cell ; 26(2): 678-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24585837

RESUMEN

Previous analysis of the Lotus histidine kinase1 (Lhk1) cytokinin receptor gene has shown that it is required and also sufficient for nodule formation in Lotus japonicus. The L. japonicus mutant carrying the loss-of-function lhk1-1 allele is hyperinfected by its symbiotic partner, Mesorhizobium loti, in the initial absence of nodule organogenesis. At a later time point following bacterial infection, lhk1-1 develops a limited number of nodules, suggesting the presence of an Lhk1-independent mechanism. We have tested a hypothesis that other cytokinin receptors function in at least a partially redundant manner with LHK1 to mediate nodule organogenesis in L. japonicus. We show here that L. japonicus contains a small family of four cytokinin receptor genes, which all respond to M. loti infection. We show that within the root cortex, LHK1 performs an essential role but also works partially redundantly with LHK1A and LHK3 to mediate cell divisions for nodule primordium formation. The LHK1 receptor is also presumed to partake in mediating a feedback mechanism that negatively regulates bacterial infections at the root epidermis. Interestingly, the Arabidopsis thaliana AHK4 receptor gene can functionally replace Lhk1 in mediating nodule organogenesis, indicating that the ability to perform this developmental process is not determined by unique, legume-specific properties of LHK1.


Asunto(s)
Citocininas/metabolismo , Lotus/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Citocininas/farmacología , Escherichia coli , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lotus/efectos de los fármacos , Lotus/genética , Lotus/microbiología , Mesorhizobium , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Mutación/genética , Organogénesis/efectos de los fármacos , Organogénesis/genética , Filogenia , Proteínas de Plantas/química , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/química , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/microbiología , Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos
13.
PLoS One ; 9(1): e87333, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498076

RESUMEN

Perenniality and vegetative re-growth vigour represent key agronomic traits in forage legume (Fabaceae) species. The known determinants of perenniality include the conservation of the vegetative meristem during and after the flowering phase, and the separation of flowering from senescence. The ability of the plants to store nutrient resources in perennial organs and remobilize them may also play an important role in the perennial growth habit, and in determining the capacity of the plant to re-grow following grazing or from one season to the next. To examine the importance of stored starch, we examined the vegetative re-growth vigour following cutting back of a unique collection of Lotus japonicus mutants impaired in their ability to synthesize or degrade starch. Our results establish that starch stored in the roots is important for re-growth vigour in Lotus japonicus. We extended this analysis to a collection of Lotus (trefoil) species and two ecotypes of Lotus japonicus displaying a large variation in their carbohydrate resource allocation. There was a positive correlation between root starch content and re-growth vigour in these natural variants, and a good general correlation between high re-growth vigour and the perennial life-form. We discuss the relationship between perenniality and the availability of root carbohydrates for re-growth.


Asunto(s)
Lotus/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Almidón/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Lotus/clasificación , Lotus/genética , Mutación , Filogenia , Raíces de Plantas/genética , Especificidad de la Especie
14.
Plant J ; 75(1): 117-129, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23627596

RESUMEN

Arbuscular mycorrhiza (AM) fungi form nutrient-acquiring symbioses with the majority of higher plants. Nutrient exchange occurs via arbuscules, highly branched hyphal structures that are formed within root cortical cells. With a view to identifying host genes involved in AM development, we isolated Lotus japonicus AM-defective mutants via a microscopic screen of an ethyl methanesulfonate-mutagenized population. A standardized mapping procedure was developed that facilitated positioning of the defective loci on the genetic map of L. japonicus, and, in five cases, allowed identification of mutants of known symbiotic genes. Two additional mutants representing independent loci did not form mature arbuscules during symbiosis with two divergent AM fungal species, but exhibited signs of premature arbuscule arrest or senescence. Marker gene expression patterns indicated that the two mutants are affected in distinct steps of arbuscule development. Both mutants formed wild-type-like root nodules upon inoculation with Mesorhizobium loti, indicating that the mutated loci are essential during AM but not during root nodule symbiosis.


Asunto(s)
Hongos/fisiología , Regulación de la Expresión Génica de las Plantas , Lotus/genética , Mesorhizobium/fisiología , Micorrizas/genética , Mapeo Cromosómico , Metanosulfonato de Etilo/farmacología , Hongos/crecimiento & desarrollo , Hongos/ultraestructura , Sitios Genéticos , Hifa , Lotus/crecimiento & desarrollo , Lotus/microbiología , Lotus/ultraestructura , Mutación , Micorrizas/crecimiento & desarrollo , Micorrizas/ultraestructura , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/ultraestructura , Nódulos de las Raíces de las Plantas , Análisis de Secuencia de ADN , Simbiosis
15.
Plant Cell Physiol ; 54(1): 107-18, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23161854

RESUMEN

The physiological role of K(+)-dependent and K(+)-independent asparaginases in plants remains unclear, and the contribution from individual isoforms during development is poorly understood. We have used reverse genetics to assess the phenotypes produced by the deficiency of K(+)-dependent NSE1 asparaginase in the model legume Lotus japonicus. For this purpose, four different mutants were identified by TILLING and characterized, two of which affected the structure and function of the asparaginase molecule and caused asparagine accumulation. Plant growth and total seed weight of mature mutant seeds as well as the level of both legumin and convicilin seed storage proteins were affected in the mutants. The mutants isolated in the present work are the first of their type in legumes and have enabled us to demonstrate the importance of asparagine and K(+)-dependent NSE1 asparaginase for nitrogen remobilization and seed production in L. japonicus plants.


Asunto(s)
Asparaginasa/metabolismo , Lotus/enzimología , Lotus/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Asparaginasa/química , Asparaginasa/genética , Asparagina/metabolismo , Mutación , Nitrógeno/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
16.
Plant Physiol ; 160(3): 1175-86, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22942388

RESUMEN

Mature seeds of both the high-starch starch-excess1 (sex1) mutant and the almost starchless phosphoglucomutase1 mutant of Arabidopsis (Arabidopsis thaliana) have 30% to 40% less lipid than seeds of wild-type plants. We show that this is a maternal effect and is not attributable to the defects in starch metabolism in the embryo itself. Low lipid contents and consequent slow postgerminative growth are seen only in mutant embryos that develop on maternal plants with mutant phenotypes. Mutant embryos that develop on plants with wild-type starch metabolism have wild-type lipid contents and postgerminative growth. The maternal effect on seed lipid content is attributable to carbohydrate starvation in the mutant fruit at night. Fruits on sex1 plants grow more slowly than those on wild-type plants, particularly at night, and have low sugars and elevated expression of starvation genes at night. Transcript levels of the transcription factor WRINKLED1, implicated in lipid synthesis, are reduced at night in sex1 but not in wild-type seeds, and so are transcript levels of key enzymes of glycolysis and fatty acid synthesis. sex1 embryos develop more slowly than wild-type embryos. We conclude that the reduced capacity of mutant plants to convert starch to sugars in leaves at night results in low nighttime carbohydrate availability in the developing fruit. This in turn reduces the rate of development and expression of genes encoding enzymes of storage product accumulation in the embryo. Thus, the supply of carbohydrate from the maternal plant to the developing fruit at night can have an important influence on oilseed composition and on postgerminative growth.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Semillas/metabolismo , Almidón/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Metabolismo de los Hidratos de Carbono/genética , Ritmo Circadiano/genética , Oscuridad , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Inflorescencia/metabolismo , Metabolismo de los Lípidos/genética , Luciferasas/metabolismo , Mutación/genética , Especificidad de Órganos/genética , Fenotipo , Floema/metabolismo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Reproducción/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
17.
Plant Biotechnol J ; 10(7): 761-72, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22651686

RESUMEN

Targeting induced local lesions in genomes (TILLING), initially a functional genomics tool in model plants, has been extended to many plant species and become of paramount importance to reverse genetics in crops species. Because it is readily applicable to most plants, it remains a dominant non-transgenic method for obtaining mutations in known genes. The process has seen many technological changes over the last 10 years; a major recent change has been the application of next-generation sequencing (NGS) to the process, which permits multiplexing of gene targets and genomes. NGS will ultimately lead to TILLING becoming an in silico procedure. We review here the history and technology in brief, but focus more importantly on recent developments in polyploids, vegetatively propagated crops and the future of TILLING for plant breeding.


Asunto(s)
Genoma de Planta/genética , Genómica/métodos , Mutagénesis/genética , Genómica/historia , Historia del Siglo XXI , Plantas/genética , Poliploidía , Genética Inversa
18.
Plant Physiol ; 159(2): 531-47, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22529285

RESUMEN

Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors.


Asunto(s)
Flavonoides/biosíntesis , Lotus/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Clonación Molecular , Biología Computacional , Minería de Datos , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glutatión/farmacología , Lotus/efectos de los fármacos , Lotus/metabolismo , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Transcripción Genética , Transgenes
19.
Plant J ; 65(6): 861-71, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21276104

RESUMEN

The number of root nodules developing on legume roots after rhizobial infection is controlled by the plant shoot through autoregulation and mutational inactivation of this mechanism leads to hypernodulation. We have characterised the Pisum sativum (pea) Sym28 locus involved in autoregulation and shown that it encodes a protein similar to the Arabidopsis CLAVATA2 (CLV2) protein. Inactivation of the PsClv2 gene in four independent sym28 mutant alleles, carrying premature stop codons, results in hypernodulation of the root and changes to the shoot architecture. In the reproductive phase sym28 shoots develops additional flowers, the stem fasciates, and the normal phyllotaxis is perturbed. Mutational substitution of an amino acid in one leucine rich repeat of the corresponding Lotus japonicus LjCLV2 protein results in increased nodulation. Similarly, down-regulation of the Lotus Clv2 gene by RNAi mediated reduction of the transcript level also resulted in increased nodulation. Gene expression analysis of LjClv2 and Lotus hypernodulation aberrant root formation Har1 (previously shown to regulate nodule numbers) indicated they have overlapping organ expression patterns. However, we were unable to demonstrate a direct protein-protein interaction between LjCLV2 and LjHAR1 proteins in contrast to the situation between equivalent proteins in Arabidopsis. LjHAR1 was localised to the plasma membrane using a YFP fusion whereas LjCLV2-YFP localised to the endoplasmic reticulum when transiently expressed in Nicotiana benthamiana leaves. This finding is the most likely explanation for the lack of interaction between these two proteins.


Asunto(s)
Genes de Plantas , Lotus/genética , Lotus/fisiología , Pisum sativum/genética , Pisum sativum/fisiología , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , ADN de Plantas/genética , Homeostasis/genética , Homeostasis/fisiología , Lotus/crecimiento & desarrollo , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pisum sativum/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Interferencia de ARN , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Nicotiana/genética , Nicotiana/fisiología
20.
Biochim Biophys Acta ; 1814(4): 496-504, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21256984

RESUMEN

Two cDNA clones coding for α-type carbonic anhydrases (CA; EC 4.2.1.1) in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the full-length proteins was confirmed by heterologous expression in Escherichia coli and purification of the encoded polypeptides. The developmental expression pattern of LjCAA1 and LjCAA2 revealed that both genes code for nodule enhanced carbonic anhydrase isoforms, which are induced early during nodule development. The genes were slightly to moderately down-regulated in ineffective nodules formed by mutant Mesorhizobium loti strains, indicating that these genes may also be involved in biochemical and physiological processes not directly linked to nitrogen fixation/assimilation. The spatial expression profiling revealed that both genes were expressed in nodule inner cortical cells, vascular bundles and central tissue. These results are discussed in the context of the possible roles of CA in nodule carbon dioxide (CO(2)) metabolism.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Lotus/enzimología , Nódulos de las Raíces de las Plantas/enzimología , Secuencia de Aminoácidos , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/genética , ADN Complementario/genética , Pruebas de Enzimas , Regulación de la Expresión Génica de las Plantas , Lotus/citología , Lotus/genética , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/genética , Homología de Secuencia de Aminoácido , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA