Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Dent Sci ; 19(1): 550-559, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303886

RESUMEN

Background/Purpose: The preciseness of detecting periodontal bone loss is examiners dependent, and this leads to low reliability. The need for automated assistance systems on dental radiographic images has been increased. To the best of our knowledge, no studies have quantitatively and automatically staged periodontitis using dental periapical radiographs. The purpose of this study was to evaluate periodontal bone loss and periodontitis stage on dental periapical radiographs using deep convolutional neural networks (CNNs). Materials and methods: 336 periapical radiographic images (teeth: 390) between January 2017 and December 2019 were collected and de-identified. All periapical radiographic image datasets were divided into training dataset (n = 82, teeth: 123) and test dataset (n = 336, teeth: 390). For creating an optimal deep CNN algorithm model, the training datasets were directly used for the segmentation and individual tooth detection. To evaluate the diagnostic power, we calculated the degree of alveolar bone loss deviation between our proposed method and ground truth, the Pearson correlation coefficients (PCC), and the diagnostic accuracy of the proposed method in the test datasets. Results: The periodontal bone loss degree deviation between our proposed method and the ground truth drawn by the three periodontists was 6.5 %. In addition, the overall PCC value of our proposed system and the periodontists' diagnoses was 0.828 (P < 0.01). The total diagnostic accuracy of our proposed method was 72.8 %. The diagnostic accuracy was highest for stage III (97.0 %). Conclusion: This tool helps with diagnosis and prevents omission, and this may be especially helpful for inexperienced younger doctors and doctors in underdeveloped countries. It could also dramatically reduce the workload of clinicians and timely access to periodontist care for people requiring advanced periodontal treatment.

2.
IEEE Trans Syst Man Cybern B Cybern ; 41(3): 686-98, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21075727

RESUMEN

Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy to understand and implement. However, the main limitation of coassociation matrices as the data structure for combining multiple clusterings is the complexity that is at least quadratic to the number of patterns N. In this paper, we propose CA-tree, which is a dendogram-like hierarchical data structure, to facilitate efficient and scalable cluster ensembles for coassociation-matrix-based algorithms. All the properties of the CA-tree are derived from base cluster labels and do not require the access to the original data features. We then apply a threshold to the CA-tree to obtain a set of nodes, which are then used in place of the original patterns for ensemble-clustering algorithms. The experiments demonstrate that the complexity for coassociation-based cluster ensembles can be reduced to close to linear to N with minimal loss on clustering accuracy.


Asunto(s)
Algoritmos , Inteligencia Artificial , Análisis por Conglomerados , Técnicas de Apoyo para la Decisión , Modelos Teóricos , Reconocimiento de Normas Patrones Automatizadas/métodos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...