Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Ecol Evol ; 14(5): e11214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725828

RESUMEN

Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.

2.
Expert Rev Mol Med ; 26: e15, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621674

RESUMEN

In mammals, the skin acts as a barrier to prevent harmful environmental stimuli from entering the circulation. CYP450s are involved in drug biotransformation, exogenous and endogenous substrate metabolism, and maintaining the normal physiological function of the skin, as well as facilitating homeostasis of the internal environment. The expression pattern of CYP450s in the skin is tissue-specific and thus differs from the liver and other organs. The development of skin topical medications, and knowledge of the toxicity and side effects of these medications require a detailed understanding of the expression and function of skin-specific CYP450s. Thus, we summarized the expression of CYP450s in the skin, their function in endogenous metabolic physiology, aberrant CYP450 expression in skin diseases and the influence of environmental variables and medications. This information will serve as a crucial foundation for future studies on the skin, as well as for the design and development of new drugs for skin diseases including topical medications.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Piel , Humanos , Piel/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Animales , Enfermedades de la Piel/metabolismo
3.
Angew Chem Int Ed Engl ; 63(22): e202403399, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483103

RESUMEN

The conventional conductive three-dimensional (3D) host fails to effectively stabilize lithium metal anodes (LMAs) due to the internal incongruity arising from nonuniform lithium-ion gradient and uniform electric fields. This results in undesirable Li "top-growth" behavior and dendritic Li growth, significantly impeding the practical application of LMAs. Herein, we construct a 3D hierarchical host with gradient-distributed dielectric properties (GDD-CH) that effectively regulate Li-ion diffusion and deposition behavior. It comprises a 3D carbon fiber host modified by layer-by-layer bottom-up attenuating Sb particles, which could promote Li-ion homogeneously distribution and reduce ion concentration gradient via unique gradient dielectric polarization. Sb transforms into superionic conductive Li3Sb alloy during cycling, facilitating Li-ion dredging and pumps towards the bottom, dominating a bottom-up deposition regime confirmed by COMSOL Multiphysics simulations and physicochemical characterizations. Consequently, a stable cycling performance of symmetrical cells over 2000 h under a high current density of 10 mA cm-2 is achieved. The GDD-CH-based lithium metal battery shows remarkable cycling stability and ultra-high energy density of 378 Wh kg-1 with a low N/P ratio (1.51). This strategy of dielectric gradient design broadens the perspective for regulating the Li deposition mechanism and paves the way for developing high-energy-density lithium metal anodes with long durability.

4.
Sci Total Environ ; 920: 170558, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38325459

RESUMEN

The trees of the Dongzhai Harbor mangrove forest suffer from antibiotic contamination from surrounding aquaculture areas. Despite this being one of the largest mangrove forests in China, few studies have focused on the antibiotic pollution status in these aquaculture areas. In the present study, the occurrence, distribution, and risk assessment of 37 antibiotics in surface water and sediment samples from aquaculture areas around Dongzhai Harbor mangrove forests were analyzed. The concentration of total antibiotics (∑antibiotics) ranged from 78.4 ng/L to 225.6 ng/L in surface water (except S14-A2) and from 19.5 ng/g dry weight (dw) to 229 ng/g dw in sediment. In the sediment, the concentrations of ∑antibiotics were relatively low (19.5-52.3 ng/g dw) at 75 % of the sampling sites, while they were high (95.7-229.0 ng/g dw) at a few sampling sites (S13-A1, S13D, S8D). The correlation analysis results showed that the Kd values of the 9 antibiotics were significantly positively correlated with molecular weight (MW), Kow, and LogKow. Risk assessment revealed that sulfamethoxazole (SMX) in surface water and SMX, enoxacin (ENX), ciprofloxacin (CFX), enrofloxacin (EFX), ofloxacin (OFX), and norfloxacin (NFX) in sediment had medium/high risk quotients (RQs) at 62.5 % and 25-100 %, respectively, of the sampling sites. The antibiotic mixture in surface water (0.06-3.36) and sediment (0.43-309) posed a high risk at 37.5 % and 66.7 %, respectively, of the sampling sites. SMX was selected as an indicator of antibiotic pollution in surface water to assist regulatory authorities in monitoring and managing antibiotic pollution in the aquaculture zone of Dongzhai Harbor. Overall, the results of the present study provide a comprehensive and detailed analysis of the characteristics of antibiotics in the aquaculture environment around the Dongzhai Harbor mangrove system and provide a theoretical basis for the source control of antibiotics in mangrove systems.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Antibacterianos/análisis , Humedales , Acuicultura , Sulfametoxazol/análisis , Agua/análisis , Medición de Riesgo , China , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
5.
Kaohsiung J Med Sci ; 39(10): 966-977, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37530654

RESUMEN

The epithelial-mesenchymal transition (EMT) is closely associated with Crohn's disease (CD) related intestinal fibrosis, a condition whose prevalence is increasing annually among children. Recently, the CD marker gene microarray screening revealed an upregulation of circ_0001666 in the colon tissues of CD patients, but its underlying mechanisms remain unclear. In this study, we explored the molecular mechanism of circ_0001666 in regulating EMT-mediated fibrosis in CD in vitro. The levels of circ_0001666 and EMT-associated proteins were assessed in CD clinical samples, and a CD cell model was established using TGF-ß1 to induce human intestinal epithelial cells (HIECs). Additionally, the expression levels of genes and proteins related to EMT and fibrosis were analyzed by quantitative real-time PCR and western blot, cell migration, and invasion were assessed via wound healing assay and transwell, respectively, and RNA pull-down and RNA immunoprecipitation assays were performed to verify the relationship between SRSF1 and BMP7 or circ_0001666. Circ_0001666 was overexpressed in the intestinal mucosal tissues of CD patients and was positively correlated with EMT. Silencing circ_0001666 inhibited the migration, invasion, EMT, and fibrosis of HIECs induced by TGF-ß1. Mechanistically, circ_0001666 regulated BMP7 expression by interacting with SRSF1. Furthermore, the effects of inhibiting circ_0001666 on HIECs could be partially reversed by overexpressing SRSF1 or silencing BMP7. Collectively, circ_0001666 regulates TGF-ß1-induced HIEC migration, invasion, EMT, and fibrosis. Circ_0001666 also promoted EMT-mediated fibrosis by interacting with SRSF1 to accelerate BMP7 mRNA decay. These findings provide new insights into the pathogenesis of CD and suggest that circ_0001666 might be a potential therapeutic target for CD.

6.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3190-3198, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37382002

RESUMEN

In the new stage for intelligent manufacturing of traditional Chinese medicine(TCM) from pilot demonstration to in-depth application and comprehensive promotion, how to raise the degree of intelligence for the process quality control system has become the bottleneck of the development of TCM production process control technology. This article has sorted out 226 TCM intelligent manufacturing projects that have been approved by the national and provincial governments since the implementation of the "Made in China 2025" plan and 145 related pharmaceutical enterprises. Then, the patents applied by these pharmaceutical enterprises were thoroughly retrieved, and 135 patents in terms of intelligent quality control technology in the production process were found. The technical details about intelligent quality control at both the unit levels such as cultivation, processing of crude herbs, preparation pretreatment, pharmaceutical preparations, and the production workshop level were reviewed from three aspects, i.e., intelligent quality sensing, intelligent process cognition, and intelligent process control. The results showed that intelligent quality control technologies have been preliminarily applied to the whole process of TCM production. The intelligence control of the extraction and concentration processes and the intelligent sensing of critical quality attributes are currently the focus of pharmaceutical enterprises. However, there is a lack of process cognitive patent technology for the TCM manufacturing process, which fails to meet the requirements of closed-loop integration of intelligent sensing and intelligent control technologies. It is suggested that in the future, with the help of artificial intelligence and machine learning methods, the process cognitive bottleneck of TCM production can be overcome, and the holistic quality formation mechanisms of TCM products can be elucidated. Moreover, key technologies for system integration and intelligent equipment are expected to be innovated and accelerated to enhance the quality uniformity and manufacturing reliability of TCM.


Asunto(s)
Inteligencia Artificial , Medicina Tradicional China , Reproducibilidad de los Resultados , Control de Calidad , Inteligencia , Preparaciones Farmacéuticas
7.
Cells ; 12(7)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048066

RESUMEN

We have shown in vivo and in vitro previously that psychosine causes dysfunction of autophagy and the ubiquitin-proteasome system underlying the pathogenesis of globoid cell leukodystrophy (GLD), a devastating lysosomal storage disease complicated by global demyelination. Here, we investigated the therapeutic efficacy of the mTOR inhibitor rapamycin in twitcher mice, a murine model of infantile GLD, in biochemical, histochemical, and clinical aspects. Administration of rapamycin to twitcher mice inhibited mTOR signaling in the brains, and significantly reduced the accumulation of insoluble ubiquitinated protein and the formation of ubiquitin aggregates. The astrocytes and microglia reactivity were attenuated in that reactive astrocytes, ameboid microglia, and globoid cells were reduced in the brains of rapamycin-treated twitcher mice. Furthermore, rapamycin improved the cortical myelination, neurite density, and rescued the network complexity in the cortex of twitcher mice. The therapeutic action of rapamycin on the pathology of the twitcher mice's brains prolonged the longevity of treated twitcher mice. Overall, these findings validate the therapeutic efficacy of rapamycin and highlight enhancing degradation of aggregates as a therapeutic strategy to modulate neuroinflammation, demyelination, and disease progression of GLD and other leukodystrophies associated with intracellular aggregates.


Asunto(s)
Enfermedades Desmielinizantes , Leucodistrofia de Células Globoides , Ratones , Animales , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/patología , Galactosilceramidasa/metabolismo , Galactosilceramidasa/uso terapéutico , Agregado de Proteínas , Enfermedades Neuroinflamatorias , Sirolimus/farmacología , Sirolimus/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Ubiquitinas , Serina-Treonina Quinasas TOR
8.
Mar Pollut Bull ; 189: 114810, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36924692

RESUMEN

As the nexus where rivers and oceans meet, estuaries are vulnerable to microplastic (MP) pollution derived from rivers. However, few studies have focused on the pollution status of MPs in small estuarine areas. Here, the abundance and characteristics of MPs in surface water and sediment samples from a small estuary, the Wanquan River estuary, were studied. The average abundance of MPs was 6573 ± 2659 n/m3 in surface water and 1065 ± 696 n/kg dw in sediment samples from the Wanquan River estuary. Most of the MPs in water samples and sediments were red (92.9 % and 88.1 %) fragments (87.4 % and 95.5 %) with sizes <1.0 mm (90.8 % and 92.4 %) made up of antifouling paint particles (APPs) (83.5 % and 89.8 %), respectively. A significant positive correlation (p < 0.01) was found between the concentration of Cu2+ and the abundance of APPs in sediment samples from the Wanquan River estuary. The APPs in the sediments can act as a continuous source of toxic chemicals (e.g., Cu2+) to marine environments. The results of this study expand our knowledge about MP pollution in small estuaries, and the ecological risk of APPs in the Wanquan River estuary to aquatic organisms should not be ignored.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Estuarios , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua , Sedimentos Geológicos , China
9.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5256-5263, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36472032

RESUMEN

Because of the complex components, simple content determination can hardly reflect the overall quality of Guizhi Fuling Capsules. Therefore, it is necessary to carry out a multi-component dissolution test. The variability of quality among different batches of products from different manufacturers is a common problem of Chinese medicine solid preparations. To comprehensively control the quality of Guizhi Fuling Capsules, we studied the dissolution behaviors of 7 index components in the capsules under different conditions, and investigated the consistency of dissolution behaviors among different batches of products from the same manufacturer. The basket method of general rule 0931 in Chinese Pharmacopoeia was adopted, and the rotating speeds were set at 50, 75, and 100 r·min~(-1), respectively. The hydrochloric acid solution(pH 1.2), acetate buffer solution(pH 4.0), pure water, and phosphate buffer solution(pH 6.8) were used as the dissolution media. Automatic sampling was carried out at the time points of 5, 10, 20, 30, 45, and 60 min, respectively. The cumulative dissolution of 7 index components was measured through ultra-performance liquid chromatography(UPLC). The difference factor f_1 and similarity factor f_2 were calculated to comprehensively evaluate the similarity of the dissolution curves among 8 batches of Guizhi Fuling Capsules, and a variety of dissolution and release equations were fitted. The results showed that multiple components had faster dissolution rates at higher rotating speed and in hydrochloric acid medium. The 8 batches of Guizhi Fuling capsules showed the average f_1 value lower than 15 and the average f_2 value higher than 50, which indicated that different batches of products had similar dissolution behaviors. Most components had synchronous dissolution behaviors and similar release cha-racteristics. This study provides a reference for the quality consistency evaluation among batches, processing optimization, and dosage form improvement of Guizhi Fuling Capsules.


Asunto(s)
Medicamentos Herbarios Chinos , Wolfiporia , Cápsulas , Solubilidad , Ácido Clorhídrico , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión
10.
Contrast Media Mol Imaging ; 2022: 6729473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051932

RESUMEN

Objective: To investigate the value of preoperative prediction of breast cancer axillary lymph node metastasis based on intratumoral and peritumoral dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) radiomics nomogram. Material and Methods. In this study, a radiomics model was developed based on a training cohort involving 250 patients with breast cancer (BC) who had undergone axillary lymph node (ALN) dissection between June 2019 and January 2021. The intratumoral and peritumoral radiomics features were extracted from the second postcontrast images of DCE-MRI. Based on filtered radiomics features, the radiomics signature was built by using the least absolute shrinkage and selection operator method. The Support Vector Machines (SVM) learning algorithm was used to construct intratumoral, periatumoral, and intratumoral combined periatumoral models for predicting axillary lymph node metastasis (ALNM) in BC. Nomogram performance was determined by its discrimination, calibration, and clinical value. Multivariable logistic regression was adopted to establish a radiomics nomogram. Results: The intratumoral combined peritumoral radiomics signature, which was composed of fifteen ALN status-related features, showed the best predictive performance and was associated with ALNM in both the training and validation cohorts (P < 0.001). The prediction efficiency of the intratumoral combined peritumoral radiomics model was higher than that of the intratumoral radiomics model and the peritumoral radiomics model. The AUCs of the training and verification cohorts were 0.867 and 0.785, respectively. The radiomics nomogram, which incorporated the radiomics signature, MR-reported ALN status, and MR-reported maximum diameter of the lesion, showed good calibration and discrimination in the training (AUC = 0.872) and validation cohorts (AUC = 0.863). Conclusion: The intratumoral combined peritumoral radiomics model derived from DCE-MRI showed great predictive value for ALNM and may help to improve clinical decision-making for BC.


Asunto(s)
Neoplasias de la Mama , Metástasis Linfática , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Metástasis Linfática/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Nomogramas , Estudios Retrospectivos
11.
Am J Chin Med ; 50(6): 1565-1597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35902245

RESUMEN

Currently, therapies for ischemic stroke are limited. Ginkgolides, unique Folium Ginkgo components, have potential benefits for ischemic stroke patients, but there is little evidence that ginkgolides improve neurological function in these patients. Clinical studies have confirmed the neurological improvement efficacy of diterpene ginkgolides meglumine injection (DGMI), an extract of Ginkgo biloba containing ginkgolides A (GA), B (GB), and K (GK), in ischemic stroke patients. In the present study, we performed transcriptome analyses using RNA-seq and explored the potential mechanism of ginkgolides in seven in vitro cell models that mimic pathological stroke processes. Transcriptome analyses revealed that the ginkgolides had potential antiplatelet properties and neuroprotective activities in the nervous system. Specifically, human umbilical vein endothelial cells (HUVEC-T1 cells) showed the strongest response to DGMI and U251 human glioma cells ranked next. The results of pathway enrichment analysis via gene set enrichment analysis (GSEA) showed that the neuroprotective activities of DGMI and its monomers in the U251 cell model were related to their regulation of the sphingolipid and neurotrophin signaling pathways. We next verified these in vitro findings in an in vivo cuprizone (CPZ, bis(cyclohexanone)oxaldihydrazone)-induced model. GB and GK protected against demyelination in the corpus callosum (CC) and promoted oligodendrocyte regeneration in CPZ-fed mice. Moreover, GB and GK antagonized platelet-activating factor (PAF) receptor (PAFR) expression in astrocytes, inhibited PAF-induced inflammatory responses, and promoted brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion, supporting remyelination. These findings are critical for developing therapies that promote remyelination and prevent stroke progression.


Asunto(s)
Enfermedades Desmielinizantes , Diterpenos , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Astrocitos/metabolismo , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Diterpenos/farmacología , Diterpenos/uso terapéutico , Células Endoteliales , Ginkgo biloba , Ginkgólidos/metabolismo , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Humanos , Lactonas/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética
12.
Sci Total Environ ; 820: 153302, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35066035

RESUMEN

Perfluoroalkyl substances (PFASs) have been widely studied by researchers due to their environmental persistence, chemical stability and potential toxicity. Some researchers have reported the physiological and biochemical toxicity of PFASs on plants through traditional and innovative methods; however, the changes in biological macromolecules caused by PFASs are rarely studied. Here, Fourier transform infrared spectroscopy (FTIR) was used to study how exposure to perfluorooctanoic acid (PFOA) alters the structure and function of biomolecules of the wetland plant Alisma orientale. Biomass results showed that PFOA had negative effects on plant growth. FTIR results showed that PFOA could result in changes in the structures, compositions, and functions of lipids, proteins and DNA in plant cells. In the treatment groups, the ratios of CH3 to lipids and carbonyl esters to lipids increased compared with the control, while the ratios of CH2 to lipids and olefinicCH to lipids decreased, which indicated lipid peroxidation caused by PFOA exposure. Changes in the compositions and secondary structures of proteins were also found, which were indicated by the decreased ratio of amide I to amide II and the increased ratio of ß-sheet to α-helix in the treatment groups compared to the control. Moreover, PFOA affected the composition of DNA by promoting the B- to A-DNA transition. These results showed that the mechanism of PFOA toxicity toward plants at the biochemical level could be illustrated by FTIR.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad , Fluorocarburos/análisis , Humedales
13.
Cells ; 12(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36611807

RESUMEN

The MELAS syndrome primarily affecting the CNS is mainly caused by the m.A3243G mutation. The heteroplasmy in different tissues affects the phenotypic spectrum, yet the impact of various levels of m.A3243G heteroplasmy on CNS remains elusive due to the lack of a proper neuronal model harboring m.A3243G mutation. We generated induced neurons (iNs) through the direct reprogramming of MELAS patients, with derived fibroblasts harboring high (>95%), intermediate (68%), and low (20%) m.A3243G mutation. iNs demonstrated neuronal morphology with neurite outgrowth, branching, and dendritic spines. The heteroplasmy and deficiency of respiratory chain complexes were retained in MELAS iNs. High heteroplasmy elicited the elevation in ROS levels and the disruption of mitochondrial membrane potential. Furthermore, high and intermediate heteroplasmy led to the impairment of mitochondrial bioenergetics and a change in mitochondrial dynamics toward the fission and fragmentation of mitochondria, with a reduction in mitochondrial networks. Moreover, iNs derived from aged individuals manifested with mitochondrial fission. These results help us in understanding the impact of various heteroplasmic levels on mitochondrial bioenergetics and mitochondrial dynamics in neurons as the underlying pathomechanism of neurological manifestations of MELAS syndrome. Furthermore, these findings provide targets for further pharmacological approaches of mitochondrial diseases and validate iNs as a reliable platform for studies in neuronal aspects of aging, neurodegenerative disorders, and mitochondrial diseases.


Asunto(s)
Síndrome MELAS , Humanos , Anciano , Síndrome MELAS/genética , Heteroplasmia , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Metabolismo Energético/genética , Neuronas
14.
Ecol Evol ; 11(23): 16763-16775, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938471

RESUMEN

The utilization of food resources by aquatic consumers reflects the structure and functioning of river food webs. In lotic water systems, where food availability and predator-prey relationships vary with gradient changes in physical conditions, understanding diet assimilation by local communities is important for ecosystem conservation. In the subtropical Liuxi River, southern China, the relative contribution of basal resources to the diet assimilation of functional feeding groups (FFGs) was determined by stable carbon (13C) and nitrogen (15N) isotope analyses. The output of Bayesian mixing models showed that diatom-dominated periphyton (epilithic biofilm), aquatic C3 plants (submerged hydrophytes), and suspended particulate organic matter (SPOM) associated with terrestrial C3 plants contributed the most to the diet assimilation of FFGs in the upper, middle, and lower reaches, respectively. The relative contribution of consumer diet assimilation was weighted by the biomass (wet weight, g/m2) of each FFG to reflect resource utilization at the assemblage level. From the upper to the lower reaches, the spatial variation in the diet assimilation of fish and invertebrate assemblages could be summarized as a longitudinal decrease in periphyton (from 57%-76% to <3%) and an increase in SPOM (from <7% to 51%-68%) with a notable midstream increase in aquatic C3 plants (23%-48%). These results indicate that instream consumers in the Liuxi River rely more on autochthonous production (e.g., periphyton and submerged hydrophytes) than on terrestrially derived allochthonous matter (e.g., terrestrial plants). The pattern of resource utilization by consumers in the mid-upper Liuxi River is consistent with findings from other open subtropical and neotropical rivers and provides evidence for the riverine productivity model. Our study indicates that protecting inherent producers in rivers (e.g., periphyton and submerged hydrophytes) and restoring their associated habitats (e.g., riffles with cobble substrate) are conducive to aquatic ecosystem management.

15.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5839-5847, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951173

RESUMEN

The present study evaluates different processing and drying methods and investigates their effects on the chemical components in Paeoniae Radix Alba via content determination. The fresh medicinal materials of Paeoniae Radix Alba collected from Bozhou of Anhui province were processed(boiled and peeled) and dried(hot air-dried, infrared-dried, and microwave-dried) at different temperatures(40, 50, 60 and 70 ℃), and the 11 components(monoterpene glycosides, polyphenols, tannin, and benzoic acid) in Paeoniae Radix Alba were determined by ultra-performance liquid chromatography coupled to triple quadrupole with electrospray tandem mass spectrometry(UPLC-TQ-MS). Then the compounds in processed and dried samples were analyzed by partial least squares discriminant analysis(PLS-DA) and orthogonal partial least squares discriminant analysis(OPLS-DA), and the contribution rates of differential components were evaluated by variable important in projection(VIP). The results indicated that the samples obtained by different processing and drying methods could be distinguished. Albiflorin, gallic acid, 1,2,3,4,6-pentakis-O-galloyl-ß-D-glucose, and benzoic acid were the common differential components in boiled Paeoniae Radix Alba. Benzoic acid was the common differential component in peeled Paeoniae Radix Alba. Gallic acid was the common differential component in Paeoniae Radix Alba dried by different methods. The samples could not be distinguished after drying at different temperatures due to the lack of common differential components. This study is expected to provide a reference for the selection of processing and drying methods and the optimization of processing parameters.


Asunto(s)
Medicamentos Herbarios Chinos , Paeonia , Cromatografía Líquida de Alta Presión , Extractos Vegetales , Espectrometría de Masas en Tándem
16.
Front Pediatr ; 9: 665377, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631608

RESUMEN

Objective: Aimed to investigate the epidemiological characteristics, clinical features, treatment, and short-term prognosis of COVID-19 in children. Methods: Retrospective analysis was conducted in 48 children with COVID-19 admitted to 12 hospitals in eight cities in Hunan province, China, from January 26, 2020 to June 30, 2020. Results: Of the 48 cases, Familial clusters were confirmed for 46 children (96%). 16 (33%) were imported from other provinces. There were 11 (23%) asymptomatic cases. only 2 cases (4%) were severe. The most common symptom was fever (n = 20, 42%). Other symptoms included cough (n = 19, 40%), fatigue (n = 8, 17%), and diarrhea (n = 5, 10%). In the early stage, the total peripheral blood leukocytes count increased in 3(6%) cases and the lymphocytes count decreased in 5 (10%) cases. C-reactive protein and procalcitonin were elevated respectively in 3 (6%) cases and 2 (4%) cases. There were abnormal chest CT changes in 22 (46%) children, including 15 (68%) with patchy ground glass opacity, 5 (22%) with consolidation, and 2 (10%) with mixed shadowing. In addition to supportive treatment, antiviral therapy was received by 41 (85%) children, 11 (23%) patients were treated with antibiotics, and 2 (4%) were treated with methylprednisolone and intravenous immunoglobulin. Compared to 2 weeks follow-up, one child developed low fever and headache during the 4 weeks follow-up, 3 (6%) children had runny noses, one of them got mild cough, and 4 (12%) children had elevated white blood cells and lymphocytes. However, LDH and CK increased at 2 weeks and 4 weeks follow-up. 2 weeks follow-up identified normal chest radiographs in 33 (69%) pediatric patients. RT-PCR detection of SARS-CoV-2 was negative in all follow-up patients at 2 and 4 weeks follow-up. All 48 pediatric patients were visited by calling after 1 year of discharge. Conclusions: Most cases of COVID-19 in children in Hunan province were asymptomatic, mild, or moderate. Close family contact was the main route of infection. It appeared that the younger the patient, the less obvious their symptoms. Epidemiological history, nucleic acid test, and chest imaging were important tools for diagnosis in children.

17.
Sci Total Environ ; 794: 148673, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34217084

RESUMEN

Tropical and subtropical rivers are being subjected to multiple stressors from human disturbance (e.g., water pollution and habitat degradation). Understanding the relationship between environmental conditions and the river ecosystem is important for improving river management. We built 14 Ecopath models composed of 28 functional groups (trophic levels [TLs] of 1.0-3.8) along a subtropical urban river to explore the influence of environmental changes on system attributes. From headwaters to downstream, the model outputs showed that the transfer efficiency (TE), energy flow parameters, and ecosystem theory indices exhibited significant (P < 0.05) differences across a longitudinal gradient of disturbance, indicating heterogeneous attributes of local river segments. The high TE values of TLs I, II, and III separated the upper, middle, and lower reaches, respectively, which could be attributed to the shift in dominant consumption flows from upstream 'periphyton - aquatic insects - insectivorous fish' to midstream 'detritus - shrimp - crustaceavorous fish' and to downstream 'phytoplankton - filter-feeding invertebrates/fish'. Structural equation modelling was used to test the causal relationships among environmental variables and demonstrated that abiotic factors directly influenced biomass composition and indirectly influenced trophic networks. Water quality, including dissolved oxygen and flow velocity; habitat characteristics, such as riffles, cobble-gravel substrate, and seasonal floodplain; and biological indicators, including the relative contributions (%) of decapods, insectivorous fish, and insect scrapers to biomass composition, had significant (P < 0.05) positive impacts on system maturity (evaluated by omnivory, connectance, and cycling indices). In the future, it will be possible to evaluate the health of river ecosystems by monitoring representative environmental factors, which could be a cost-effective approach to system-level improvement.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , China , Humanos , Invertebrados , Ríos
18.
Sci Total Environ ; 750: 141667, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871370

RESUMEN

Stable isotopes are increasingly used to detect and understand the impacts of environmental changes on riverine ecological properties. The δ13C and δ15N signatures of fish with different feeding habits were measured in a large subtropical river to evaluate how fish isotopic niches respond to environmental gradients and human disturbance. From basal resources to fish consumers, the high values of epilithic periphyton (biofilm) δ13C and suspended particulate organic matter δ15N concurrently determined the niche ranges and space (e.g., convex hull area) of fish communities. Along a longitudinal gradient (except in the industrial zone), the number of fish trophic guilds identified by Bayesian ellipses continuously increased; meanwhile, higher trophic diversity and less redundancy were observed near the lower reaches and estuary. Variance inflation factors were estimated to detect the multicollinearity of 40 environmental variables, 14 of which were selected as indicators. Relative importance (RI) analysis was used to evaluate the explanatory power of these indicators for the spatial variation in isotopic niche metrics; the results showed that riffle habitat area, water nitrate concentration, gravel-cobble substrate, and riparian buffer width were the 4 key environmental indicators (average RI > 12%) that determined the longitudinal pattern of fish isotopic niches. These findings suggested that community-level δ13C signatures are more responsive to changes in habitats (e.g., riffle) and substrates (e.g., gravel-cobble) supporting the productivity of autochthonous diatoms while δ15N signatures respond to water quality altered by nitrogen pollution from manure-fertilized farming and poultry livestock effluent. Furthermore, δ15N may be more robust and interpretable than δ13C as an isotopic indicator of ecosystem change in rivers exposed to multiple or complex anthropogenic stressors.


Asunto(s)
Ecosistema , Ríos , Animales , Teorema de Bayes , Isótopos de Carbono/análisis , China , Indicadores Ambientales , Monitoreo del Ambiente , Humanos , Isótopos de Nitrógeno/análisis
19.
J Hazard Mater ; 401: 123747, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33113730

RESUMEN

This study pays a special attention to three phenolic endocrine disrupting compounds (EDCs), - bisphenol A (BPA), 4-nonylphenol (4-NP), and 4-tert-octylphenol (4-t-OP) - that are present in urban environments, resultant of several anthropogenic activities that can be also carried through rainfall runoff. We investigated the distributions of BPA, 4-NP, and 4-t-OP in Pearl River basin and estimated the mass loads in rainfall runoff, wastewater treatment plant (WWTP) effluents, and industrial wastewater from urbanized Huizhou and Dongguan regions. These three phenolic EDCs were detected frequently in tributaries and mainstream of Dongjiang River with the maximum 4-NP concentrations of 14,540 ng/L in surface waters and 3088 ng/g in sediments. BPA showed high concentrations in rainfall runoff samples with maximum concentrations of 5873 and 2397 ng/L in Huizhou and Dongguan regions, respectively, while concentrations for 4-NP and 4-t-OP were detected at tens to hundreds of nanograms per liter. Mass loads of phenolic EDCs from rainfall runoff were 3-62 times higher than those of WWTP effluents, suggesting rainfall runoff is an important source of phenolic EDCs into receiving waters. Sources and tributaries showed median to high estrogenic risks, while low to median risks were found in mainstream, implying the source control should be focused.

20.
J Cancer ; 11(22): 6704-6715, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33046993

RESUMEN

Our study explored the tumor-suppressive effect of curcumin on cervical cancer cells. Cervical cancer is one of the most common cancers among women worldwide. Acquired resistance to chemotherapeutics and toxicity of such drugs has undermined the effectiveness of cervical cancer treatments. Therefore, the identification of novel chemotherapeutics is key to improving the survival of patients with cervical cancer. Curcumin has been shown to have various bioactivities, including antioxidant and antitumor effects; however, its effect on cervical cancer remains elusive. Here, we used the SiHa human cervical cancer cell line to test various concentrations of curcumin on the proliferation and apoptosis of cervical cancer cells. The involvement of autophagy and reactive oxygen species (ROS) in these effects were also tested by using specific autophagy inhibitors and ROS scavengers. Our results showed that curcumin induced ROS accumulation, apoptosis, autophagy, cell cycle arrest, and cellular senescence accompanied by upregulation of p53 and p21 proteins in SiHa cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...