Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
1.
Sci China Life Sci ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38913236

RESUMEN

The BMP signaling pathway plays a crucial role in regulating early embryonic development and tissue homeostasis. SMAD6 encodes a negative regulator of BMP, and rare variants of SMAD6 are recurrently found in individuals with birth defects. However, we observed that a subset of rare pathogenic variants of SMAD6 consistently exhibited positive regulatory effects instead of the initial negative effects on the BMP signaling pathway. We sought to determine whether these SMAD6 variants have common pathogenic mechanisms. Here, we showed that pathogenic SMAD6 variants accompanying this functional reversal exhibit similar increases in deamidation. Mechanistically, increased deamidation of SMAD6 variants promotes the accumulation of the BMP receptor BMPR1A and the formation of new complexes, both of which lead to BMP signaling pathway activation. Specifically, two residues, N262 and N404, in SMAD6 were identified as the crucial sites of deamidation, which was catalyzed primarily by glutamine-fructose-6-phosphate transaminase 2 (GFPT2). Additionally, treatment of cells harboring SMAD6 variants with a deamidase inhibitor restored the inhibitory effect of SMAD6 on the BMP signaling pathway. Conversely, when wild-type SMAD6 was manually simulated to mimic the deamidated state, the reversed function of activating BMP signaling was reproduced. Taken together, these findings show that deamidation of SMAD6 plays a crucial role in the functional reversal of BMP signaling activity, which can be induced by a subset of various SMAD6 variants. Our study reveals a common pathogenic mechanism shared by these variants and provides a potential strategy for preventing birth defects through deamidation regulation, which might prevent the off-target effects of gene editing.

2.
Ecotoxicol Environ Saf ; 280: 116579, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865940

RESUMEN

Environmental exposure to the cadmium (Cd) has been shown to be a risk factor for colorectal cancer (CRC) progression, but the exact mechanism has not been fully elucidated. In this study, we found that chronic Cd (3 µM) exposure promoted the proliferation, adhesion, migration, and invasion of CRC cells in vitro, as well as lung metastasis in vivo. RNA-seq and TCGA-COAD datasets revealed that decreased hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) expression may be a crucial factor in Cd-induced CRC progression. Further analysis using qRT-PCR and tissue microarrays from CRC patients showed that HADHB expression was significantly reduced in CRC tissues compared to adjacent normal tissues, and low HADHB expression was associated with adverse clinical features and poor overall survival, either directly or through TNM stage. Furthermore, HADHB was found to play an important role in the Cd-induced malignant metastatic phenotype of CRC cells and lung metastasis in mice. Mechanistically, we discovered that chronic Cd exposure resulted in hypermethylation of the HADHB promoter region via inhibition of DNA demethylase tet methylcytosine dioxygenase 2 (TET2), which then led to decreased HADHB expression and activation of the FAK signaling pathway, and ultimately contributed to CRC progression. In conclusion, this study provided a new potential insight and evaluable biomarker for Cd exposure-induced CRC progression and treatment.


Asunto(s)
Cadmio , Neoplasias Colorrectales , Proteínas de Unión al ADN , Dioxigenasas , Progresión de la Enfermedad , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inducido químicamente , Humanos , Dioxigenasas/genética , Animales , Ratones , Cadmio/toxicidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , Masculino , Proliferación Celular/efectos de los fármacos , Femenino , Ratones Desnudos , Metilación de ADN/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
3.
BMC Cancer ; 24(1): 715, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862908

RESUMEN

BACKGROUND: Resistance to immune checkpoint inhibitors (ICIs) represents a major unmet medical need in non-small cell lung cancer (NSCLC) patients. Vascular endothelial growth factor (VEGF) inhibition may reverse a suppressive microenvironment and recover sensitivity to subsequent ICIs. METHODS: This phase Ib/IIa, single-arm study, comprised dose-finding (Part A) and expansion (Part B) cohorts. Patients with ICIs-refractory NSCLC were enrolled to receive anlotinib (a multi-target tyrosine kinase inhibitor) orally (from days 1 to 14 in a 21-day cycle) and nivolumab (360 mg every 3 weeks, intravenously) on a 21-day treatment cycle. The first 21-day treatment cycle was a safety observation period (phase Ib) followed by a phase II expansion cohort. The primary objectives were recommended phase 2 dose (RP2D, part A), safety (part B), and objective response rate (ORR, part B), respectively. RESULTS: Between November 2020 and March 2022, 34 patients were screened, and 21 eligible patients were enrolled (6 patients in Part A). The RP2D of anlotinib is 12 mg/day orally (14 days on and 7 days off) and nivolumab (360 mg every 3 weeks). Adverse events (AEs) of any cause and treatment-related AEs (TRAEs) were reported in all treated patients. Two patients (9.5%) experienced grade 3 TRAE. No grade 4 or higher AEs were observed. Serious AEs were reported in 4 patients. Six patients experienced anlotinib interruption and 4 patients experienced nivolumab interruption due to TRAEs. ORR and disease control rate (DCR) was 19.0% and 76.2%, respectively. Median PFS and OS were 7.4 months (95% CI, 4.3-NE) and 15.2 months (95% CI, 12.1-NE), respectively. CONCLUSION: Our study suggests that anlotinib combined with nivolumab shows manageable safety and promising efficacy signals. Further studies are warranted. TRIAL REGISTRATION: NCT04507906 August 11, 2020.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Nivolumab , Inhibidores de Proteínas Quinasas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Indoles/administración & dosificación , Indoles/efectos adversos , Indoles/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Nivolumab/administración & dosificación , Nivolumab/efectos adversos , Nivolumab/uso terapéutico , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinolinas/administración & dosificación , Quinolinas/efectos adversos , Quinolinas/uso terapéutico , Adolescente
4.
PLoS One ; 19(6): e0304453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38923974

RESUMEN

Hirudo nipponia is an important medicinal animal in China. Its salivary gland secretions contain a variety of protein bioactive substances. Investigations of its salivary glands are of great significance in the study of the medicinal value and mechanism of leech secretions. Illumina RNA-Seq technology was used to perform transcriptome sequencing of salivary gland tissue of H. nipponia under starvation (D30) and fed (D0) states. A total of 2,650 differentially expressed genes (DEGs) were screened. Using the label-free protein quantification technique and bioinformatics analysis, the expression of differentially expressed proteins (DEPs) in the salivary gland tissue of H. nipponia was compared. A total of 2,021 proteins were identified, among which 181 proteins were differentially expressed between the starvation and fed states, with 72 significantly upregulated and 109 significantly downregulated. The salivary glands of H. nipponia synthesized protein-based active substances after 30 days of starvation and adapted to the starvation environment by weakening respiratory activity and reducing metabolic activity to reduce energy expenditure. Energy was produced by glycolysis and the tricarboxylic acid cycle for the synthesis of substances such as antibiotics. This study combined transcriptome and proteome sequencing data to provide a data reference for an in-depth study of the regulatory mechanism of salivary gland secretions of H. nipponia under starvation stress by analyzing DEGs and DEPs.


Asunto(s)
Sanguijuelas , Proteoma , Glándulas Salivales , Inanición , Transcriptoma , Animales , Glándulas Salivales/metabolismo , Proteoma/metabolismo , Inanición/metabolismo , Inanición/genética , Sanguijuelas/genética , Sanguijuelas/metabolismo , Perfilación de la Expresión Génica
5.
Materials (Basel) ; 17(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930291

RESUMEN

Metallic glass is being gradually recognized for its unique disordered atomic configuration and excellent catalytic activity, so is of great significance in the field of catalysis. Recent reports have demonstrated that Fe-based metallic glass, as a competitive new catalyst, has good catalytic activity for the fields of environment and energy, including high catalytic efficiency and stability. This review introduces the latest developments in metallic glasses with various atomic components and their excellent catalytic properties as catalysts. In this article, the influence of Fe-based metallic glass catalysts on the catalytic activity of dye wastewater treatment and water-splitting is discussed. The catalytic performance in different atomic composition systems and different water environment systems, and the preparation parameters to improve the surface activity of catalysts, are reviewed. This review also describes several prospects in the future development and practical application of Fe-based metallic glass catalysts and provides a new reference for the synthesis of novel catalysts.

6.
J Hazard Mater ; 474: 134792, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838523

RESUMEN

In this study, to understand the seasonal dynamics of air-sea exchange and its regulation mechanisms, we investigated polycyclic aromatic hydrocarbons (PAHs) at the air-sea interface in the western Taiwan Strait in combination with measurements and machine learning (ML) predictions. For 3-ring PAHs and most of 4- to 6-ring, volatilization and deposition fluxes were observed, respectively. Seasonal variations in air-sea exchange flux suggest the influence of monsoon transitions. Results of interpretable ML approach (XGBoost) indicated that volatilization of 3-ring PAHs was significantly controlled by dissolved PAH concentrations (contributed 24.0 %), and the gaseous deposition of 4- to 6-ring PAHs was related to more contaminated air masses originating from North China during the northeast monsoon. Henry's law constant emerged as a secondary factor, influencing the intensity of air-sea exchange, particularly for low molecular weight PAHs. Among environmental parameters, notably high wind speed emerges as the primary factor and biological pump's depletion of PAHs in surface seawater amplifies the gaseous deposition process. The distinct dynamics of exchanges at the air-water interface for PAHs in the western TWS can be attributed to variations in primary emission intensities, biological activity, and the inconsistent pathways of long-range atmospheric transport, particularly within the context of the monsoon transition.

7.
Phys Rev Lett ; 132(23): 235001, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905668

RESUMEN

Relativistic positron sources with high spin polarization have important applications in nuclear and particle physics and many frontier fields. However, it is challenging to produce dense polarized positrons. Here we present a simple and effective method to achieve such a positron source by directly impinging a relativistic high-density electron beam on the surface of a solid target. During the interaction, a strong return current of plasma electrons is induced and subsequently asymmetric quasistatic magnetic fields as high as megatesla are generated along the target surface. This gives rise to strong radiative spin flips and multiphoton processes, thus leading to efficient generation of copious polarized positrons. With three-dimensional particle-in-cell simulations, we demonstrate the production of a dense highly polarized multi-GeV positron beam with an average spin polarization above 40% and nC-scale charge per shot. This offers a novel route for the studies of laserless strong-field quantum electrodynamics physics and for the development of high-energy polarized positron sources.

8.
Adv Sci (Weinh) ; : e2309203, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837691

RESUMEN

Targeted delivery of glutamine metabolism inhibitors holds promise for cholangiocarcinoma therapy, yet effective delivery vehicles remain a challenge. This study reports the development of a biomimetic nanosystem, termed R-CM@MSN@BC, integrating mesoporous organosilicon nanoparticles with reactive oxygen species-responsive diselenide bonds for controlled release of the glutamine metabolism inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) and the photosensitizer Ce6. Erythrocyte membrane coating, engineered with Arg-Gly-Asp (RGD) peptides, not only enhanced biocompatibility but also improved tumor targeting and tissue penetration. Upon laser irradiation, R-CM@MSN@BC executed both photodynamic and glutamine-metabolic therapies, inducing necroptosis in tumor cells and triggering significant immunogenic cell death. Time-of-flight mass cytometry analysis revealed that R-CM@MSN@BC can remodel the immunosuppressive tumor microenvironment by polarizing M1-type macrophages, reducing infiltration of M2-type and CX3CR1+ macrophages, and decreasing T cell exhaustion, thereby increasing the effectiveness of anti-programmed cell death ligand 1 immunotherapy. This strategy proposed in this study presents a viable and promising approach for the treatment of cholangiocarcinoma.

9.
Opt Lett ; 49(12): 3476-3479, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875649

RESUMEN

A high average power re-frequency operation Fe:ZnSe laser using laser diode side-pumped free-running Er:YAG lasers as activating sources is presented. Two pieces of subsurface layer doped Fe:ZnSe polycrystal are adoptive in a reflective resonator configuration and face-cooled by liquid nitrogen. A maximal Fe:ZnSe laser power of 105 W at a wavelength of 4.1 µm is achieved upon pumping by ten home-made Er:YAG lasers with fiber coupled output working at a frequency of 250 Hz and a pulse duration of ∼420 µs. Corresponding to the maximum Fe:ZnSe laser power, the optical-optical efficiency and slope efficiency with respect to the absorbed pump power are 43% and 44% respectively. The beam quality factor M2 is measured to be 3.4. To the best of our knowledge, it is the highest output average power of an Fe:ZnSe laser reported.

10.
BMC Vet Res ; 20(1): 242, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831422

RESUMEN

BACKGROUND: ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS: This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS: The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.


Asunto(s)
Adenosina Trifosfatasas , Antioxidantes , Microbioma Gastrointestinal , Yeyuno , Animales , Yeyuno/microbiología , Yeyuno/enzimología , Antioxidantes/metabolismo , Microbioma Gastrointestinal/fisiología , Adenosina Trifosfatasas/metabolismo , Ovinos , Masculino , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo
11.
J Cardiothorac Surg ; 19(1): 373, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918860

RESUMEN

BACKGROUND: Tracheobronchial injuries caused by blunt chest trauma are rare in children, and such injuries usually involve multiple organs. Most cases involve respiratory failure on the way to the hospital, and the mortality rate is high. Herein, we describe the case of a 5-year-old patient who fell from an electric vehicle, causing complete rupture of the bilateral main bronchus. CASE PRESENTATION: We treated a 5-year-old patient with complete bilateral main bronchus rupture. Chest computed tomography (CT) failed to detect bronchial rupture. Continuous closed thoracic drainage resulted in a large amount of bubble overflow. Tracheal rupture was suspected. Fibreoptic bronchoscopy revealed complete rupture of the right main bronchus and rupture of the left main bronchus. Emergency tracheoplasty was performed under cardiopulmonary bypass (CPB). During the operation, we found that the bilateral main bronchi were completely ruptured. Postoperative recovery was smooth. The traditional surgical method for treating these injuries is lateral thoracotomy. However, a median sternotomy provides a better opportunity for selective repair. Extracorporeal circulation-assisted surgery is required for patients with unstable breathing. CONCLUSION: Complete fractures of the bilateral main bronchi are rare. Bronchial rupture should be suspected in the presence of expansion defect-dropped lungs and massive air leakage despite tube thoracostomy in haemopneumothorax developing after thoracic trauma. Extracorporeal circulation-assisted tracheoplasty is a relatively safe option for children whose respiratory system is difficult to maintain, thus ensuring oxygenation ventilation and a clear surgical field.


Asunto(s)
Bronquios , Broncoscopía , Humanos , Bronquios/lesiones , Bronquios/cirugía , Preescolar , Masculino , Broncoscopía/métodos , Heridas no Penetrantes/cirugía , Heridas no Penetrantes/complicaciones , Tomografía Computarizada por Rayos X , Rotura/cirugía , Traumatismos Torácicos/cirugía , Traumatismos Torácicos/complicaciones
12.
J Hazard Mater ; 473: 134690, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38781857

RESUMEN

N-Nitroso compounds (NOCs) are recognized as important factors that promote gastric cancer development, but the specific effects and potential mechanisms by which NOC exposure promotes gastric cancer are still poorly understood. In this study, we explored the effects and potential molecular mechanisms of NOCs on the promotion of gastric cancer using methylnitronitrosoguanidine (MNNG), a classical direct carcinogen of NOC. The results of in vivo and in vitro experiments showed that chronic and low-concentration MNNG exposure significantly promoted the malignant progression of tumors, including cell migration, cell invasion, vasculogenic mimicry (VM) formation, cell spheroid formation, stem cell-like marker expression, and gastric cancer growth and metastasis. Mechanistically, we revealed that demethylase ALKBH5 regulated the level of the N6­methyladenosine (m6A) modification in the 3'UTR and CDS region of the ZKSCAN3 mRNA to promote ZKSCAN3 expression, mediated the binding of ZKSCAN3 to the VEGFA promoter region to regulate VEGFA transcription, and participated in MNNG-induced gastric cancer cell migration, invasion, VM formation, cell spheroid formation, stem cell-like marker expression and ultimately gastric cancer progression. In addition, our study revealed that ALKBH5-ZKSCAN3-VEGFA signaling was significantly activated during MNNG-induced gastric carcinogenesis, and further studies in gastric cancer patients showed that ALKBH5, ZKSCAN3, and VEGFA expression were upregulated in cancers compared with paired gastric mucosal tissues, that ALKBH5, ZKSCAN3, and VEGFA could serve as important biomarkers for determining patient prognosis, and that the molecular combination showed greater prognostic value. These findings provide a theoretical basis for developing gastric cancer interventions for NOCs and for determining gastric cancer progression.


Asunto(s)
Adenosina , Desmetilasa de ARN, Homólogo 5 de AlkB , Movimiento Celular , Progresión de la Enfermedad , Metilnitronitrosoguanidina , Neoplasias Gástricas , Factor A de Crecimiento Endotelial Vascular , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/inducido químicamente , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Humanos , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Metilnitronitrosoguanidina/toxicidad , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Carcinógenos/toxicidad , Ratones Endogámicos BALB C , Ratones
13.
EClinicalMedicine ; 72: 102626, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38756107

RESUMEN

Background: Previous trials of renal denervation (RDN) have been designed to investigate reduction of blood pressure (BP) as the primary efficacy endpoint using non-selective RDN without intraoperatively verified RDN success. It is an unmet clinical need to map renal nerves, selectively denervate renal sympathetic nerves, provide readouts for the interventionalists and avoid futile RDN. We aimed to examine the safety and efficacy of renal nerve mapping/selective renal denervation (msRDN) in patients with uncontrolled hypertension (HTN) and determine whether antihypertensive drug burden is reduced while office systolic BP (OSBP) is controlled to target level (<140 mmHg). Methods: We conducted a randomized, prospective, multicenter, single-blinded, sham-controlled trial. The study combined two efficacy endpoints at 6 months as primary outcomes: The control rate of patients with OSBP <140 mmHg (non-inferior outcome) and change in the composite index of antihypertensive drugs (Drug Index) in the treatment versus Sham group (superior outcome). This design avoids confounding from excess drug-taking in the Sham group. Antihypertensive drug burden was assessed by a composite index constructed as: Class N (number of classes of antihypertensive drugs) × (sum of doses). 15 hospitals in China participated in the study and 220 patients were enrolled in a 1:1 ratio (msRDN vs Sham). The key inclusion criteria included: age (18-65 years old), history of essential HTN (at least 6 months), heart rate (≥70 bpm), OSBP (≥150 mmHg and ≤180 mmHg), ambulatory BP monitoring (ABPM, 24-h SBP ≥130 mmHg or daytime SBP ≥135 mmHg or nighttime SBP ≥120 mmHg), renal artery stenosis (<50%) and renal function (eGFR >45 mL/min/1.73 m2). The catheter with both stimulation and ablation functions was inserted in the distal renal main artery. The RDN site (hot spot) was selected if SBP increased (≥5 mmHg) by intra-renal artery (RA) electrical stimulation; an adequate RDN was confirmed by repeated electronic stimulation if no increase in BP otherwise, a 2nd ablation was performed at the same site. At sites where there was decreased SBP (≥5 mmHg, cold spot) or no BP response (neutral spot) to stimulation, no ablation was performed. The mapping, ablation and confirmation procedure was repeated until the entire renal main artery had been tested then either treated or avoided. After msRDN, patients had to follow a predefined, vigorous drug titration regimen in order to achieve target OSBP (<140 mmHg). Drug adherence was monitored by liquid chromatography-tandem mass spectrometry analysis using urine. This study is registered with ClinicalTrials.gov (NCT02761811) and 5-year follow-up is ongoing. Findings: Between July 8, 2016 and February 23, 2022, 611 patients were consented, 220 patients were enrolled in the study who received standardized antihypertensive drug treatments (at least two drugs) for at least 28 days, presented OSBP ≥150 mmHg and ≤180 mmHg and met all inclusion and exclusion criteria. In left RA and right RA, mapped sites were 8.2 (3.0) and 8.0 (2.7), hot/ablated sites were 3.7 (1.4) and 4.0 (1.6), cold spots were 2.4 (2.6) and 2.0 (2.2), neutral spots were 2.0 (2.1) and 2.0 (2.1), respectively. Hot, cold and neutral spots was 48.0%, 27.5% and 24.4% of total mapped sites, respectively. At 6 M, the Control Rate of OSBP was comparable between msRDN and Sham group (95.4% vs 92.8%, p = 0.429), achieved non-inferiority margin -10% (2.69%; 95% CI -4.11%, 9.83%, p < 0.001 for non-inferiority); the change in Drug Index was significantly lower in msRDN group compared to Sham group (4.37 (6.65) vs 7.61 (10.31), p = 0.010) and superior to Sham group (-3.25; 95% CI -5.56, -0.94, p = 0.003), indicating msRDN patients need significantly fewer drugs to control OSBP <140 mmHg. 24-hour ambulatory SBP decreased from 146.8 (13.9) mmHg by 10.8 (14.1) mmHg, and from 149.8 (12.8) mmHg by 10.0 (14.0) mmHg in msRDN and Sham groups, respectively (p < 0.001 from Baseline; p > 0.05 between groups). Safety profiles were comparable between msRDN and Sham groups, demonstrating the safety and efficacy of renal mapping/selective RDN to treat uncontrolled HTN. Interpretation: The msRDN therapy achieved the goals of reducing the drug burden of HTN patients and controlling OSBP <140 mmHg, with only approximately four targeted ablations per renal main artery, much lower than in previous trials. Funding: SyMap Medical (Suzhou), LTD, Suzhou, China.

14.
J Colloid Interface Sci ; 668: 634-645, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696991

RESUMEN

Solid polymer electrolytes (SPEs) have been considered the most promising separators for all-solid-state lithium metal batteries (ASSLMBs) due to their ease of processing and low cost. However, the practical applications of SPEs in ASSLMBs are limited by their low ionic conductivities and mechanical strength. Herein, we developed a three-dimensional (3D) interconnected MXene (Ti3C2Tx) network and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles synergistically reinforced polyethylene oxide (PEO)-based SPE, where the association of Li+ with ether-oxygen in PEO could be significantly weakened through the Lewis acid-base interactions between the electron-absorbing group (Ti-F, -O-) of Ti3C2Tx and Li+. Besides, the TFSI- in lithium salts could be immobilized by hydrogen bonds from the Ti-OH of Ti3C2Tx. The 3D interconnected Ti3C2Tx network not only alleviated the agglomeration of inorganic fillers (LLZTO), but also improved the mechanical strength of composite solid electrolyte (CSE). Consequently, the assembled Li||CSE||Li symmetric battery showed excellent cycling stability at 35 ℃ (stable cycling over 3000 h at 0.1 mA cm-2, 0.1 mAh cm-2) and -2 ℃ (stable cycling over 2500 h at 0.05 mA cm-2, 0.05 mAh cm-2). Impressively, the LiFePO4||CSE||Li battery showed a high discharge capacity of 145.3 mAh/g at 0.3 C after 300 cycles at 35 ℃. This rational structural design provided a new strategy for the preparation of high-performance solid-state electrolytes for lithium metal batteries.

15.
Water Res ; 257: 121721, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728782

RESUMEN

Microplastics (MPs) waste is widespread globally in water systems. The opportunistic human pathogen Pseudomonas aeruginosa can cause serious acute and chronic infections that are notoriously difficult to treat. Ciprofloxacin (CIP) is broadly applied as an anti-P. aeruginosa drug. A growing evidence reveals that antibiotic-resistance genes-carrying Pseudomonas aeruginosa were detected on MPs forming plastisphere due to their adsorbability along with high occurrence of CIP in water environments. The MPs-niched CIP-resistant P. aeruginosa has been likely to emerge as an unignorable public health issue. Here, we offered a novel approach to assess the development of CIP-resistant P. aeruginosa under MPs-antibiotic coexistence at a water region scale. By combing the adsorption isotherm models used to estimate CIP condensation around MPs and a pharmacokinetic/pharmacodynamic-based microbial population dynamic model, we predicted the P. aeruginosa development on CIP-adsorbed MPs in waters. Our assessment revealed a high antibiotic resistance in the P. aeruginosa populations (∼50 %) with a wider range of waterborne total cell counts (∼10-2-104 cfu mL-1) among water regions in that the resistance proportion was primarily determined by CIP pollution level and relative abundance of various polymer type of MPs. We implicate that water region-specific MPs were highly likely to provide media for P. aeruginosa propagation. Our results highlight the importance of antibiotic-resistant pathogen colonization-emerging environmental medium interactions when addressing global threat from MPs pollution, in the context of MPs-antibiotics co-contamination assessment and for the continued provision of water system management.


Asunto(s)
Antibacterianos , Ciprofloxacina , Microplásticos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Contaminantes Químicos del Agua , Farmacorresistencia Bacteriana
16.
J Genet Genomics ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582298

RESUMEN

The phenotypic diversity resulting from artificial or natural selection of sheep has made a significant contribution to human civilization. Hu sheep are a local sheep breed unique to China with high reproductive rates and rapid growth. Genomic selection signatures have been widely used to investigate the genetic mechanisms underlying phenotypic variation in livestock. Here, we conduct whole-genome sequencing of 207 Hu sheep and compare them with the wild ancestors of domestic sheep (Asiatic mouflon) to investigate the genetic characteristics and selection signatures of Hu sheep. Based on six signatures of selection approaches, we detect genomic regions containing genes related to reproduction (BMPR1B, BMP2, PGFS, CYP19, CAMK4, GGT5, and GNAQ), vision (ALDH1A2, SAG, and PDE6B), nervous system (NAV1), and immune response (GPR35, SH2B2, PIK3R3, and HRAS). Association analysis with a population of 1299 Hu sheep reveal those missense mutations in the GPR35 (GPR35 g.952651 A>G; GPR35 g.952496 C>T) and NAV1 (NAV1 g.84216190 C>T; NAV1 g.84227412 G>A) genes are significantly associated (P < 0.05) with immune and growth traits in Hu sheep, respectively. This research offers unique insights into the selection characteristics of Hu sheep and facilitates further genetic improvement and molecular investigations.

17.
Immunology ; 172(4): 600-613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637948

RESUMEN

Immune cell infiltration is a significant pathological process in abdominal aortic aneurysms (AAA). T cells, particularly CD4+ T cells, are essential immune cells responsible for substantial infiltration of the aorta. Regulatory T cells (Tregs) in AAA have been identified as tissue-specific; however, the time, location, and mechanism of acquiring the tissue-specific phenotype are still unknown. Using single-cell RNA sequencing (scRNA-seq) on CD4+ T cells from the AAA aorta and spleen, we discovered heterogeneity among CD4+ T cells and identified activated, proliferating and developed aorta Tregs. These Tregs originate in the peripheral tissues and acquire the tissue-specific phenotype in the aorta. The identification of precursors for Tregs in AAA provides new insight into the pathogenesis of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Análisis de la Célula Individual , Linfocitos T Reguladores , Aneurisma de la Aorta Abdominal/inmunología , Aneurisma de la Aorta Abdominal/patología , Linfocitos T Reguladores/inmunología , Humanos , Animales , Masculino , Linfocitos T CD4-Positivos/inmunología , Ratones , Análisis de Secuencia de ARN , Bazo/inmunología , Activación de Linfocitos , Ratones Endogámicos C57BL
18.
Phys Rev E ; 109(3-2): 035204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632729

RESUMEN

During the ultraintense laser interaction with solids (overdense plasmas), the competition between two possible quantum electrodynamics (QED) mechanisms responsible for e^{±} pair production, i.e., linear and nonlinear Breit-Wheeler (BW) processes, remains to be studied. Here, we have implemented the linear BW process via a Monte Carlo algorithm into the QED particle-in-cell (PIC) code yunic, enabling us to self-consistently investigate both pair production mechanisms in the plasma environment. By a series of two-dimensional QED-PIC simulations, the transition from the linear to the nonlinear BW process is observed with the increase of laser intensities in the typical configuration of a linearly polarized laser interaction with solid targets. A critical normalized laser amplitude about a_{0}∼400-500 is found under a large range of preplasma scale lengths, below which the linear BW process dominates over the nonlinear BW process. This work provides a practicable technique to model linear QED processes via integrated QED-PIC simulations. Moreover, it calls for more attention to be paid to linear BW pair production in near future 10-PW-class laser-solid interactions.

19.
Anim Biotechnol ; 35(1): 2344207, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38669223

RESUMEN

As a crucial economic trait, fat deposition is directly related to carcass quality and feed efficiency in sheep. The purpose of this study was to investigate the polymorphisms of the FGB gene related to fat deposition and detect the expression features of the FGB gene in different adipose tissues of sheep by using Sanger sequencing, MassARRAY® SNP technique, and quantitative real-time PCR (qRT-PCR). Results showed that in the intron region of the FGB gene, a SNP g. 3378953 A > T has been identified, and significant association was found between perirenal fat weight, perirenal fat relative weight, mesenteric fat weight, and mesenteric fat relative weight (P < 0.05). Moreover, qRT-PCR analysis showed that FGB was expressed in all three adipose tissues, and FGB gene expression level in the AA genotype was significantly lower than that in the AT or TT genotypes (P < 0.05). Therefore, the FGB gene can be used as a candidate gene to reduce fat deposition in Hu sheep breeding, and the selection of the AA genotype in Hu sheep in production practice is more conducive to improving production efficiency.


Asunto(s)
Tejido Adiposo , Polimorfismo de Nucleótido Simple , Animales , Polimorfismo de Nucleótido Simple/genética , Tejido Adiposo/metabolismo , Ovinos/genética , Ovinos/fisiología , Genotipo , Oveja Doméstica/genética , Oveja Doméstica/fisiología , Masculino , Femenino , Cruzamiento
20.
Environ Pollut ; 349: 123943, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599271

RESUMEN

Aeromonas hydrophila has ability to spread tetracycline resistance (tetR) under stresses of oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry. Even though environmental reservoir of Aeromonas allows it to be at interfaces across One Health components, a robust modelling framework for rigorously assessing health risks is currently lacking. We proposed a One Health-based approach and leveraged recent advances in quantitative microbial risk assessment appraised by available dataset to interpret interactions at the human-animal-environment interfaces in various exposure scenarios. The dose-response models were constructed considering the effects on mortality for aquaculture species and tetR genes transfer for humans. A scenario-specific risk assessment on pond species-associated A. hydrophila infection and human gut-associated tetR genes transfer was examined. Risk-based control strategies were involved to test their effectiveness. We showed that farmed shrimp exposed to tetracycline-resistant A. hydrophila in OTC-contaminated water experienced higher infection risk (relative risk: 1.25-1.34). The tetR genes transfer risk for farmers in shrimp ponds (∼2 × 10-4) and swimmers in coastal areas (∼4 × 10-6) during autumn exceeded acceptable risk (10-6). This cautionary finding underscores the importance of accounting for monitoring, assessing, and mitigating occupational health hazards among workers in shrimp farming sectors within future One Health-based strategies for managing water infection risks. We recommend that OTC emission rate together with A. hydrophila concentration should be reduced by up to 70-99% to protect human, farmed shrimp, and environmental health. Our predictive framework can be adopted for other systems and be used as a "risk detector" for assessing tetR-related health risks that invoke potential risk management on addressing sustainable mitigation on offsetting residual OTC emission and tetR genes spread in a species-human-environmental health system.


Asunto(s)
Aeromonas hydrophila , Acuicultura , Salud Única , Resistencia a la Tetraciclina , Aeromonas hydrophila/efectos de los fármacos , Humanos , Animales , Resistencia a la Tetraciclina/genética , Antibacterianos/farmacología , Medición de Riesgo , Oxitetraciclina/farmacología , Infecciones por Bacterias Gramnegativas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...