Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Nat Biotechnol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839873

RESUMEN

Porphyrins and their derivatives find extensive applications in medicine, food, energy and materials. In this study, we produced porphyrin compounds by combining Rhodobacter sphaeroides as an efficient cell factory with enzymatic catalysis. Genome-wide CRISPRi-based screening in R. sphaeroides identifies hemN as a target for improved coproporphyrin III (CPIII) production, and exploiting phosphorylation of PrrA further improves the production of bioactive CPIII to 16.5 g L-1 by fed-batch fermentation. Subsequent screening and engineering high-activity metal chelatases and coproheme decarboxylase results in the synthesis of various metalloporphyrins, including heme and the anti-tumor agent zincphyrin. After pilot-scale fermentation (200 L) and setting up the purification process for CPIII (purity >95%), we scaled up the production of heme and zincphyrin through enzymatic catalysis in a 5-L bioreactor, with CPIII achieving respective enzyme conversion rates of 63% and 98% and yielding 10.8 g L-1 and 21.3 g L-1, respectively. Our strategy offers a solution for high-yield bioproduction of heme and other valuable porphyrins with substantial industrial and medical applications.

2.
Sci Bull (Beijing) ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38760248

RESUMEN

Mechanical loading is required for bone homeostasis, but the underlying mechanism is still unclear. Our previous studies revealed that the mechanical protein polycystin-1 (PC1, encoded by Pkd1) is critical for bone formation. However, the role of PC1 in bone resorption is unknown. Here, we found that PC1 directly regulates osteoclastogenesis and bone resorption. The conditional deletion of Pkd1 in the osteoclast lineage resulted in a reduced number of osteoclasts, decreased bone resorption, and increased bone mass. A cohort study of 32,500 patients further revealed that autosomal dominant polycystic kidney disease, which is mainly caused by loss-of-function mutation of the PKD1 gene, is associated with a lower risk of hip fracture than those with other chronic kidney diseases. Moreover, mice with osteoclast-specific knockout of Pkd1 showed complete resistance to unloading-induced bone loss. A mechanistic study revealed that PC1 facilitated TAZ nuclear translocation via the C-terminal tail-TAZ complex and that conditional deletion of Taz in the osteoclast lineage resulted in reduced osteoclastogenesis and increased bone mass. Pharmacological regulation of the PC1-TAZ axis alleviated unloading- and estrogen deficiency- induced bone loss. Thus, the PC1-TAZ axis may be a potential therapeutic target for osteoclast-related osteoporosis.

3.
Synth Syst Biotechnol ; 9(4): 658-666, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38817825

RESUMEN

Parageobacillus thermoglucosidasius is emerging as a highly promising thermophilic organism for metabolic engineering. The utilization of CRISPR-Cas technologies has facilitated programmable genetic manipulation in P. thermoglucosidasius. However, the absence of thermostable NHEJ enzymes limited the capability of the endogenous type I CRISPR-Cas system to generate a variety of extensive genomic deletions. Here, two thermophilic NHEJ enzymes were identified and combined with the endogenous type I CRISPR-Cas system to develop a genetic manipulation tool that can achieve long-range genomic deletion across various lengths. By optimizing this tool-through adjusting the expression level of NHEJ enzymes and leveraging our discovery of a negative correlation between GC content of the guide RNA (gRNA) and deletion efficacy-we streamlined a comprehensive gRNA selection manual for whole-genome editing, achieving a 100 % success rate in randomly selecting gRNAs. Notably, using just one gRNA, we achieved genomic deletions spanning diverse length, exceeding 200 kilobases. This tool will facilitate the genomic manipulation of P. thermoglucosidasius for both fundamental research and applied engineering studies, further unlocking its potential as a thermophilic cell factory.

5.
Small ; : e2400542, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593309

RESUMEN

Osteoarthritis (OA) management remains challenging because of its intricate pathogenesis. Intra-articular injections of drugs, such as glucocorticoids and hyaluronic acid (HA), have certain limitations, including the risk of joint infection, pain, and swelling. Hydrogel-based therapeutic strategies have attracted considerable attention because of their enormous therapeutic potential. Herein, a supramolecular nanofiber hydrogel is developed using dexamethasone sodium phosphate (DexP) as a vector to deliver lentivirus-encoding hyaluronan synthase 2 (HAS2) (HAS2@DexP-Gel). During hydrogel degradation, HAS2 lentivirus and DexP molecules are slowly released. Intra-articular injection of HAS2@DexP-Gel promotes endogenous HA production and suppresses synovial inflammation. Additionally, HAS2@DexP-Gel reduces subchondral bone resorption in the anterior cruciate ligament transection-induced OA mice, attenuates cartilage degeneration, and delays OA progression. HAS2@DexP-Gel exhibited good biocompatibility both in vitro and in vivo. The therapeutic mechanisms of the HAS2@DexP-Gel are investigated using single-cell RNA sequencing. HAS2@DexP-Gel optimizes the microenvironment of the synovial tissue by modulating the proportion of synovial cell subpopulations and regulating the interactions between synovial fibroblasts and macrophages. The innovative nanofiber hydrogel, HAS2@DexP-Gel, effectively enhances endogenous HA production while reducing synovial inflammation. This comprehensive approach holds promise for improving joint function, alleviating pain, and slowing OA progression, thereby providing significant benefits to patients.

6.
Microb Biotechnol ; 17(5): e14472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683679

RESUMEN

The availability of an alternative and efficient genetic editing technology is critical for fundamental research and strain improvement engineering of Streptomyces species, which are prolific producers of complex secondary metabolites with significant pharmaceutical activities. The mobile group II introns are retrotransposons that employ activities of catalytic intron RNAs and intron-encoded reverse transcriptase to precisely insert into DNA target sites through a mechanism known as retrohoming. We here developed a group II intron-based gene editing tool to achieve precise chromosomal gene insertion in Streptomyces. Moreover, by repressing the potential competition of RecA-dependent homologous recombination, we enhanced site-specific insertion efficiency of this tool to 2.38%. Subsequently, we demonstrated the application of this tool by screening and characterizing the secondary metabolite biosynthetic gene cluster (BGC) responsible for synthesizing the red pigment in Streptomyces roseosporus. Accompanied with identifying and inactivating this BGC, we observed that the impair of this cluster promoted cell growth and daptomycin production. Additionally, we applied this tool to activate silent jadomycin BGC in Streptomyces venezuelae. Overall, this work demonstrates the potential of this method as an alternative tool for genetic engineering and cryptic natural product mining in Streptomyces species.


Asunto(s)
Intrones , Familia de Multigenes , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Intrones/genética , Edición Génica/métodos , Mutagénesis Insercional/métodos , Metabolismo Secundario/genética , Vías Biosintéticas/genética , Recombinación Homóloga
7.
Theranostics ; 14(6): 2544-2559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646641

RESUMEN

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Condrocitos , Curación de Fractura , Osteogénesis , Células Madre , Canales Catiónicos TRPP , Animales , Curación de Fractura/fisiología , Ratones , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Condrocitos/metabolismo , Células Madre/metabolismo , Osteogénesis/fisiología , Ratones Noqueados , Condrogénesis/fisiología , Periostio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Modelos Animales de Enfermedad , Masculino
8.
ACS Chem Biol ; 19(3): 654-659, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331720

RESUMEN

Extracellular soluble proteins are key agents in the development of various diseases. However, strategies to remove therapeutically relevant extracellular targets are still scarce. Here, we establish dendronized DNA chimera (DENTAC) as an efficient approach for targeted degradation of the extracellular protein of interest (ePOI). DENTAC consists of a DNA dendron against cell-surface scavenger receptors (SRs), a protein ligand, and a connecting linker, which harnesses SRs as a lysosome-trafficking receptor to mediate the lysosomal degradation of the ePOI. We interrogate and optimize structure-activity relationships of DENTAC. Using neutravidin as a model ePOI, we show that both branch number and DNA length in the DNA dendron are important determinants for efficient lysosomal delivery and degradation of the protein. We demonstrate three branches and 10 nucleotide-length polythymidine as the optimal DNA dendron components to construct DENTAC. We further exemplify the anticancer application of DENTAC by targeting matrix metalloproteinase-9 (MMP-9), where we find linker property as another factor important for DENTAC performance. We reveal that MMP-9-targeting DENTAC effectively restrain cancer cell proliferation, migration, and invasion. This study thus provides a potent strategy to delete extracellular proteins that are commonly difficult to target.


Asunto(s)
Dendrímeros , Metaloproteinasa 9 de la Matriz , Proteolisis , Dendrímeros/farmacología , Proliferación Celular , ADN
9.
Bone Res ; 12(1): 6, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267422

RESUMEN

Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.


Asunto(s)
Callosidades , Fracturas Óseas , Anciano , Humanos , Animales , Ratones , Curación de Fractura , Senescencia Celular , Envejecimiento , Macrófagos , Células Madre
10.
Metab Eng ; 81: 210-226, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142854

RESUMEN

Streptomyces has an extensive array of bioactive secondary metabolites (SMs). Nevertheless, devising a framework for the heterologous production of these SMs remains challenging. We here reprogrammed a versatile plug-and-play Streptomyces super-chassis and established a universal pipeline for production of diverse SMs via understanding of the inherent pleiotropic effects of ethanol shock on jadomycin production in Streptomyces venezuelae. We initially identified and characterized a set of multiplex targets (afsQ1, bldD, bldA, and miaA) that contribute to SM (jadomycin) production when subjected to ethanol shock. Subsequently, we developed an ethanol-induced orthogonal amplification system (EOAS), enabling dynamic and precise control over targets. Ultimately, we integrated these multiplex targets into functional units governed by the EOAS, generating a universal and plug-and-play Streptomyces super-chassis. In addition to achieving the unprecedented titer and yield of jadomycin B, we also evidenced the potential of this super-chassis for production of diverse heterologous SMs, including antibiotic oxytetracycline, anticancer drug doxorubicins, agricultural herbicide thaxtomin A, and plant growth regulator guvermectin, all with the yields of >10 mg/g glucose in a simple mineral medium. Given that the production of SMs all required complexed medium and the cognate yields were usually much lower, our achievement of using a universal super-chassis and engineering pipeline in a simple mineral medium is promising for convenient heterologous production of SMs.


Asunto(s)
Adenosina/análogos & derivados , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos , Etanol/metabolismo , Minerales/metabolismo , Minerales/farmacología
11.
Nat Commun ; 14(1): 6193, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794017

RESUMEN

Thermophilic cell factories have remarkably broad potential for industrial applications, but are limited by a lack of genetic manipulation tools and recalcitrance to transformation. Here, we identify a thermophilic type I-B CRISPR-Cas system from Parageobacillus thermoglucosidasius and find it displays highly efficient transcriptional repression or DNA cleavage activity that can be switched by adjusting crRNA length to less than or greater than 26 bp, respectively, without ablating Cas3 nuclease. We then develop an orthogonal tool for genome editing and transcriptional repression using this type I-B system in both thermophile and mesophile hosts. Empowered by this tool, we design a strategy to screen the genome-scale targets involved in transformation efficiency and established dynamically controlled supercompetent P. thermoglucosidasius cells with high efficiency ( ~ 108 CFU/µg DNA) by temporal multiplexed repression. We also demonstrate the construction of thermophilic riboflavin cell factory with hitherto highest titers in high temperature fermentation by genome-scale identification and combinatorial manipulation of multiple targets. This work enables diverse high-efficiency genetic manipulation in P. thermoglucosidasius and facilitates the engineering of thermophilic cell factories.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética , Sistemas CRISPR-Cas/genética , Edición Génica , Endonucleasas/genética , Expresión Génica
14.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3508-3519, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37622376

RESUMEN

Geobacillus thermoglucosidasius is a kind of Gram-positive facultative anaerobic bacteria. The fast growth rate under high temperature and less susceptibility to microbial contamination enable G. thermoglucosidasius to be a desirable producer of biofuels and high-value-added chemicals for the next-generation industrial biotechnology. However, compared with the classical model strain Escherichia coli, the applications of G. thermoglucosidasius are hampered by its low transformation efficiency. This study aimed at obtaining competent cells with high transformation efficiency through inactivating restriction enzymes, adding cell membrane inhibitors and cell wall weakening agents. The results showed that the electro-transformation efficiency achieved 1.2×104 CFU/(µg DNA) by knocking out four genes encoding restriction enzymes. Adding a certain amount of tween 80, dl-threonine and glycine further increased the competent efficiency about 22.5, 44, and 334 times, respectively. The electro-transformation efficiency was enhanced to 4.6×106 CFU/(µg DNA) under the optimized conditions, laying a foundation for genetic manipulation and metabolic engineering of G. thermoglucosidasius.


Asunto(s)
Bacillaceae , Electroporación , Terapia de Electroporación , Membrana Celular , Escherichia coli/genética
15.
STAR Protoc ; 4(3): 102435, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37432853

RESUMEN

Large biosynthetic gene cluster (BGC) cloning is important for discovering natural product-based drugs and remains challenging in high GC content microorganisms (e.g., Actinobacteria). Here, we present an in vitro CRISPR-Cas12a-mediated protocol for direct cloning of large DNA fragments. We describe steps for crRNA design and preparation, genomic DNA isolation, and CRISPR-Cas12a cleavage and capture plasmid construction and linearization. We then detail target BGC and plasmid DNA ligation and transformation and screening for positive clones. For complete details on the use and execution of this protocol, please refer to Liang et al.1.


Asunto(s)
Sistemas CRISPR-Cas , ADN , Sistemas CRISPR-Cas/genética , Clonación Molecular , Genómica
16.
J Am Chem Soc ; 145(30): 16642-16649, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477624

RESUMEN

Confining the protein degradation activity of proteolysis-targeting chimera (PROTAC) to cancer lesions ensures precision treatment. However, it still remains challenging to precisely control PROTAC function in tumor regions in vivo. We herein describe a near-infrared (NIR) photoactivatable nano-PROTAC (NAP) for remote-controllable proteolysis in tumor-bearing mice. NAP is formed by molecular self-assembly from an amphiphilic conjugate of PROTAC linked with an NIR photosensitizer through a singlet oxygen (1O2)-cleavable linker. The activity of PROTAC is initially silenced but can be remotely switched on upon NIR photoirradiation to generate 1O2 by the photosensitizer. We demonstrated that NAP enabled tumor-specific degradation of bromodomain-containing protein 4 (BRD4) in an NIR light-instructed manner. This in combination with photodynamic therapy (PDT) elicited an effective suppression of tumor growth. This work thus presents a novel approach for spatiotemporal control over targeted protein degradation by PROTAC.


Asunto(s)
Neoplasias , Fotoquimioterapia , Ratones , Animales , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Proteolisis , Proteínas Nucleares , Factores de Transcripción , Neoplasias/tratamiento farmacológico
17.
Front Endocrinol (Lausanne) ; 14: 1149168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124755

RESUMEN

Background: Diabetes mellitus is a chronic metabolic disease with systemic complications. Patient with diabetes have increased risks of bone fracture. Previous studies report that diabetes could affect bone metabolism, however, the underlying mechanism is still unclear. Methods: We isolated exosomes secreted by bone marrow mesenchymal stem cells of normal and diabetic mice and test their effects on osteogenesis and adipogenesis. Then we screened the differential microRNAs by high-throughput sequencing and explored the function of key microRNA in vitro and in vivo. Results: We find that lower bone mass and higher marrow fat accumulation, also called bone-fat imbalance, exists in diabetic mouse model. Exosomes secreted by normal bone marrow mesenchymal stem cells (BMSCs-Exos) enhanced osteogenesis and suppressed adipogenesis, while these effects were diminished in diabetic BMSCs-Exos. miR-221, as one of the highly expressed miRNAs within diabetic BMSCs-Exos, showed abilities of suppressing osteogenesis and promoting adipogenesis both in vitro and in vivo. Elevation of miR-221 level in normal BMSCs-Exos impairs the ability of regulating osteogenesis and adipogenesis. Intriguingly, using the aptamer delivery system, delivery normal BMSCs-Exos specifically to BMSCs increased bone mass, reduced marrow fat accumulation, and promoted bone regeneration in diabetic mice. Conclusion: We demonstrate that BMSCs derived exosomal miR-221 is a key regulator of diabetic osteoporosis, which may represent a potential therapeutic target for diabetes-related skeletal disorders.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Células Madre Mesenquimatosas/metabolismo , Huesos/metabolismo , Osteogénesis/genética
18.
Antimicrob Agents Chemother ; 67(6): e0009823, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140388

RESUMEN

Spinal cystic echinococcosis, a severely neglected, rare disease, is characterized by high morbidity, disability, and mortality in prevalent regions. Due to the high-risk nature of surgical treatment and the ineffectiveness of conventional drugs, there is an unmet need for novel safe and effective drugs for the treatment of this disease. In this study, we examined the therapeutic effects of α-mangostin for spinal cystic echinococcosis, and explored its potential pharmacological mechanism. The repurposed drug exhibited a potent in vitro protoscolicidal effect and significantly inhibited the evolution of larval encystation. Moreover, it demonstrated a remarkable anti-spinal cystic echinococcosis effect in gerbil models. Mechanistically, we found that α-mangostin intervention led to intracellular depolarization of mitochondrial membrane potential and reactive oxygen species generation. In addition, we observed elevated expression of autophagic proteins, aggregation of autophagic lysosomes, activated autophagic flux, and disrupted larval microstructure in protoscoleces. Further metabolite profiling showed that glutamine was imperative for autophagic activation and anti-echinococcal effects mediated by α-mangostin. These results suggest that α-mangostin is a potentially valuable therapeutic option against spinal cystic echinococcosis through its effect on glutamine metabolism.


Asunto(s)
Equinococosis , Xantonas , Humanos , Glutamina/uso terapéutico , Equinococosis/tratamiento farmacológico , Xantonas/farmacología , Proteínas
20.
Trends Biotechnol ; 41(8): 1080-1095, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36967257

RESUMEN

A biosensor is an analytical device that converts a biological response into a measurable output signal. Bacterial allosteric transcription factors (aTFs) have been utilized as a novel class of recognition elements for in vitro biosensing, which circumvents the limitations of aTF-based whole-cell biosensors (WCBs) and helps to meet the increasing requirement of small-molecule biosensors for diverse applications. In this review, we summarize the recent advances related to the configuration of aTF-based biosensors in vitro. Particularly, we evaluate the advantages of aTFs for in vitro biosensing and highlight their great potential for the establishment of robust and easy-to-implement biosensing strategies. We argue that key technical innovations and generalizable workflows will enhance the pipeline for facile construction of diverse aTF-based small-molecule biosensors.


Asunto(s)
Técnicas Biosensibles , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA