Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
J Ethnopharmacol ; 336: 118718, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179056

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tackling phlegm and improving blood circulation is vital in the treatment of ischemic stroke (IS), culminating in the development of Zhongfeng Decoction (ZFD), a method grounded in this approach and serving as an effective therapy for IS. Nonetheless, the defensive mechanism of the ZFD in preventing cerebral ischemia-reperfusion damage remains ambiguous. AIM OF THE STUDY: Determine the active ingredients in ZFD that have neuroprotective effects, and identify its mechanism of action against IS. MATERIALS AND METHODS: A cerebral ischemia model in rats was developed, utilizing TTC, Nissl staining, and an oxidative stress kit to evaluate the neuroprotective impact of ZFD on this rat model. Following this, an amalgamation of LC-MS and network pharmacology techniques was employed to pinpoint potential active components, primary targets, and crucial action mechanisms of ZFD in treating IS. Finally, key targets and signaling pathways were detected using qRT-PCR, ELISA, Western blotting, electron microscopy, and other methods. RESULTS: Through LC-MS and network analysis, 15 active ingredients and 6 hub targets were identified from ZFD. Analysis of pathway enrichment revealed that ZFD predominantly engages in the AGE-RAGE signaling route. Kaempferol, quercetin, luteolin, baicalein, and nobiletin in ZFD are the main active ingredients for treating IS. In vivo validation showed that ZFD can improve nerve damage in cerebral ischemic rats, reduce the mRNA expression of IL6, SERPINE1, CCL2, and TGFB1 related to inflammation. Furthermore, we also confirmed that ZFD can inhibit the protein expression of AGEs, RAGE, p-IKBα/IKBα, p-NF-κB p65/NF-κB p65, reduce autophagy levels, and thus decrease neuronal apoptosis. CONCLUSIONS: The mechanism of action of ZFD in treating IS primarily includes inflammation suppression, oxidative stress response alleviation, post-stroke cell autophagy and apoptosis regulation, and potential mediation of the AGE-RAGE signaling pathway. This study elucidates how ZFD functions in treating IS, establishing a theoretical basis for its clinical application.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Daño por Reperfusión , Transducción de Señal , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Autofagia/efectos de los fármacos , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada/metabolismo
2.
Ecology ; : e4415, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39267580

RESUMEN

Soil microbes have long been recognized to substantially affect the coexistence of pairwise plant species across terrestrial ecosystems. However, projecting their impacts on the coexistence of multispecies plant systems remains a pressing challenge. To address this challenge, we conducted a greenhouse experiment with 540 seedlings of five tree species in a subtropical forest in China and evaluated microbial effects on multispecies coexistence using the structural method, which quantifies how the structure of species interactions influences the likelihood for multiple species to persist. Specifically, we grew seedlings alone or with competitors in different microbial contexts and fitted individual biomass to a population dynamic model to calculate intra- and interspecific interaction strength with and without soil microbes. We then used these interaction structures to calculate two metrics of multispecies coexistence, structural niche differences (which promote coexistence) and structural fitness differences (which drive exclusion), for all possible communities comprising two to five plant species. We found that soil microbes generally increased both the structural niche and fitness differences across all communities, with a much stronger effect on structural fitness differences. A further examination of functional traits between plant species pairs found that trait differences are stronger predictors of structural niche differences than of structural fitness differences, and that soil microbes have the potential to change trait-mediated plant interactions. Our findings underscore that soil microbes strongly influence the coexistence of multispecies plant systems, and also add to the experimental evidence that the influence is more on fitness differences rather than on niche differences.

3.
Curr Res Food Sci ; 9: 100831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281340

RESUMEN

During the fermentation of ripened pu-erh tea (RPT), the composition of lipids and other compounds changes significantly. In this study, we conducted industrial fermentation of RPT and observed that the levels of water extract, tea polyphenols, free amino acids, catechins, caffeine, rutin, theophylline, luteolin, and myricetin decreased, while the level of soluble sugar increased. Additionally, the levels of gallic acid, quercetin, ellagic acid, and kaempferol first increased and then decreased during fermentation. We identified a total of 731 lipids, which were classified into seven categories using a lipomics method. Among these lipids, 85 with relatively high contents decreased, while 201 lipids with low contents increased after fermentation. This led to an overall decrease in the sum contents of lipids and dominant lipids, including glycerophospholipids and saccharolipids. We also detected 33 medium- and long-chain fatty acids, with α-linolenic acid (881.202 ± 12.13-1322.263 ± 19.78 µg/g), palmitic acid (797.275 ± 19.56-955.180 ± 30.49 µg/g), and linoleic acid (539.634 ± 15.551-706.869 ± 12.14 µg/g) being the predominant ones. Coenzymes Q9 (62.76-63.57 µg/g) and Q10 (50.82-59.33 µg/g) were also identified in the fermentation process. Our findings shed light on the changes in lipids during the fermentation of RPT and highlight the potential bio-active compounds, such as α-linolenic acid, linoleic acid, Coenzymes Q9, and Q10, in ripened pu-erh tea. This contributes to a better understanding of the fermentation mechanism for RPT.

4.
Int Microbiol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316254

RESUMEN

Antimicrobial peptides (AMPs) are a family of short defense proteins that are naturally produced by all organisms and have great potential as effective substitutes for small-molecule antibiotics. The present study aims to excavate AMPs from sea cucumbers and achieve their heterologous expression in prokaryotic Escherichia coli. Using MytC as a probe, a cysteine-stabilized peptide SCAK33 with broad-spectrum antimicrobial activity was discovered from the proteome of Apostichopus japonicas. The SCAK33 showed inhibitory effects on both gram positive and gram negative bacteria with MICs of 3-28 µM, and without significant hemolysis activity in rat blood erythrocyte. Especially, it exhibited good antimicrobial activity against Bacillus megaterium, B. subtilis, and Vibrio parahaemolyticus with the MIC of 3, 7, and 7 µM, respectively. After observation by scanning electronic microscopy (SEM) and confocal laser scanning microscope (CLSM), it was found that the cell membrane of bacteria was severely damaged. Furthermore, the recombinant SCAK33 (reSCAK33) was heterologously expressed by fusion with SUMO tag in E. coli BL21(DE3), and the protein yield reached 70 mg/L. The research will supplement the existing quantity of sea cucumber AMPs and provide data support for rapid mining and biological preparation of sea cucumber AMPs.

5.
Chem Commun (Camb) ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347653

RESUMEN

Novel hydrogen-bonding-catalyzed upcycling of polyethylene glycol (PEG) waste to 1,4-dioxane over OH-functionalized ionic liquids (ILs) under mild (≥80 °C), solvent- and metal-free conditions was developed through a theoretical computation-assisted design. Notably, 1,4-dioxane was spontaneously separated due to its immiscibility with ILs.

6.
Nat Commun ; 15(1): 8428, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341804

RESUMEN

Excessive accumulation of reactive oxygen and nitrogen species (RONS) and dysbiosis of intestinal microbiota are pivotal symptoms for inflammatory bowel disease (IBD) and its associated complications, such as intestinal fibrosis. This research introduces a probiotic inulin hydrogel loaded with polypyrrole (PPy) nanozymes and antifibrotic drug pirfenidone (PFD) (PPy/PFD@Inulin gel) designed for the concurrent amelioration of IBD and its fibrotic complication. Upon oral administration, the inulin gel matrix could extend the gastrointestinal residence time of PPy nanozymes and PFD, facilitating the efficient reduction of pro-inflammatory cytokine levels and enhancement of the intestinal epithelial barrier repair as well as the suppression of intestinal fibrosis through sustained RONS scavenging, modulation of gut microbiota and attenuation of the TGF-ß/Smad signaling pathway to inhibit fibroblast proliferation. Notably, the PPy/PFD@Inulin gel demonstrated significant prophylactic and therapeutic efficacy in acute and chronic colitis as well as intestinal fibrosis induced by dextran sodium sulfate (DSS) in mouse models. Thus, the engineered ternary PPy/PFD@Inulin gel offered a pioneered paradigm for simultaneous reversal of IBD and its associated complications, such as intestinal fibrosis, in a single therapeutic regimen.


Asunto(s)
Fibrosis , Hidrogeles , Enfermedades Inflamatorias del Intestino , Inulina , Animales , Hidrogeles/química , Inulina/química , Ratones , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Sulfato de Dextran , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Pirroles/química , Intestinos/patología , Intestinos/efectos de los fármacos , Intestinos/microbiología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
7.
JACS Au ; 4(8): 3228-3237, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39211585

RESUMEN

The water-gas shift (WGS) reaction is a crucial process for hydrogen production. Unfortunately, achieving high reaction rates and yields for the WGS reaction at low temperatures remains a challenge due to kinetic limitations. Here, nonthermal plasma coupled to Cu/γ-Al2O3 catalysts was employed to enable the WGS reaction at considerably lower temperatures (up to 140 °C). For comparison, thermal-catalytic WGS reactions using the same catalysts were conducted at 140-300 °C. The best performance (72.1% CO conversion and 67.4% H2 yield) was achieved using an 8 wt % Cu/γ-Al2O3 catalyst in plasma catalysis at ∼140 °C, with 8.74 MJ mol-1 energy consumption and 8.5% H2 fuel production efficiency. Notably, conventional thermal catalysis proved to be ineffective at such low temperatures. Density functional theory calculations, coupled with in situ diffuse reflectance infrared Fourier transform spectroscopy, revealed that the plasma-generated OH radicals significantly enhanced the WGS reaction by influencing both the redox and carboxyl reaction pathways.

8.
Environ Pollut ; 360: 124668, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39103033

RESUMEN

Weed infestation is the major biological threat in direct-seeded rice production and can cause significant yield losses. The effective use of herbicides is particularly important in direct-seeded rice production. Anilofos, a pre-emergence herbicide, has been shown to be effective against the weed barnyardgrass. However, its impacts on crop yield and the direct-seeded rice production ecosystem remain underexplored. In this study, we conducted field trials and used untargeted metabolomics to investigate systemic effects of two different treatments (40 g/acre and 60 g/acre) on rice shoot and root as well as the rhizosphere soil during the critical tillering stage. Here, a total of 400 metabolites were determined in the crop and soil, with differential metabolites primarily comprising lipids and lipid-like molecules as well as phenylpropanoids and polyketides. Spearman correlation network analysis and a Zi-Pi plot revealed 7 key differential metabolites with significant topological roles, including succinic acid semialdehyde and riboflavin. KEGG pathway analysis showed that anilofos downregulated the amino acid metabolism while mainly promoted carbohydrate metabolism and secondary metabolites biosynthesis of the crop, which made minimal disruption on soil metabolism. Notably, we found 40 g/acre anilofos application could significantly improve the rice yield, potentially linked to the improved activity of flavonoid biosynthesis and starch and sucrose metabolism. This research provides a comprehensive evaluation of anilofos effects in the direct-seeded rice production system, offering new insights into optimizing herbicide use to improve agricultural sustainability and productivity.


Asunto(s)
Herbicidas , Metabolómica , Oryza , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos
9.
Protein Expr Purif ; 224: 106577, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39153562

RESUMEN

Developing more effective bioactive ingredients of natural origin is imperative for promoting wound healing. Sea cucumbers have long enjoyed a good reputation as both food delicacies and traditional medicines. In this study, we heterogeneously expressed a Apostichopus japonicus derived novel protein AjPSPLP-3, which exhibits a theoretical molecular weight of 13.034 kDa, through fusion with maltose binding protein (MBP). AjPSPLP-3 contains a strict CXXCXC motif, nine extremely conserved cysteine residues and two highly conserved cysteine residues. The predicted structure of AjPSPLP-3 consists of random coil and nine ß-sheets, Cys30-Cys67, Cys38-Cys58, Cys53-Cys90, Cys56-Cys66, and Cys81-Cys102 participating in the formation of five pairs of disulfide bonds. In vitro experiments conducted on HaCaT cells proved that AjPSPLP-3 and MBP-fused AjPSPLP-3 significantly contribute to HaCaT cells proliferation and migration without exhibiting hemolytic activity on murine erythrocytes. Specifically, treatment with 10 µmol/L MBP-fused AjPSPLP-3 protein increased the viability of HaCaT cells by 12.28 % (p < 0.001), while treatment with 10 µmol/L AjPSPLP-3 protein increased viability of HaCaT cells by 6.01 % (p < 0.01). Furthermore, wound closure of MBP-fused AjPSPLP-3 and AjPSPLP-3 were 22.51 % (p < 0.01) and 7.32 % (p < 0.05) higher than that of the control groups in HaCaT cells following 24 h of incubation.


Asunto(s)
Movimiento Celular , Proliferación Celular , Stichopus , Animales , Stichopus/genética , Stichopus/química , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Humanos , Ratones , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Clonación Molecular , Secuencia de Aminoácidos , Línea Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/metabolismo , Células HaCaT
10.
Front Cardiovasc Med ; 11: 1410006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171325

RESUMEN

Background: Hypercholesterolemia, a critical contributor to cardiovascular disease, is not fully understood in terms of its relationship with serum metabolites and their role in disease pathogenesis. Methods: This study leveraged GWAS data to explore the relationship between serum metabolites and hypercholesterolemia, pinpointing significant metabolites via Mendelian Randomization (MR) and KEGG pathway enrichment analysis. Data on metabolites were sourced from a European population, with analysis focusing on individuals diagnosed with hypercholesterolemia. Results: Out of 486 metabolites analyzed, ten showed significant associations with hypercholesterolemia, categorized into those enhancing risk and those with protective effects. Specifically, 2-methoxyacetaminophen sulfate and 1-oleoylglycerol (1-monoolein) were identified as risk-enhancing, with odds ratios (OR) of 1.545 (95% CI: 1.230-1.939; P_FDR = 3E-04) and 1.462 (95% CI: 1.036-2.063; P_FDR = 0.037), respectively. On the protective side, 3-(cystein-S-yl)acetaminophen, hydroquinone sulfate, and 2-hydroxyacetaminophen sulfate demonstrated ORs of 0.793 (95% CI: 0.735-0.856; P_FDR = 6.18E-09), 0.641 (95% CI: 0.423-0.971; P_FDR = 0.042), and 0.607 (95% CI: 0.541-0.681; P_FDR = 5.39E-17), respectively. In addition, KEGG pathway enrichment analysis further revealed eight critical pathways, comprising "biosynthesis of valine, leucine, and isoleucine", "phenylalanine metabolism", and "pyruvate metabolism", emphasizing their significant role in the pathogenesis of hypercholesterolemia. Conclusion: This study underscores the potential causal links between particular serum metabolites and hypercholesterolemia, offering innovative viewpoints on the metabolic basis of the disease. The identified metabolites and pathways offer promising targets for therapeutic intervention and warrant further investigation.

11.
Science ; 385(6711): 866-871, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-38963875

RESUMEN

The 2024 moment magnitude 7.5 Noto Peninsula (Japan) earthquake caused devastation to communities and was generated by a complex rupture process. Using space geodetic and seismic observations, we have shown that the event deformed the peninsula with a peak uplift reaching 5 meters at the west coast. Shallow slip exceeded 10 meters on an offshore fault. Peak stress drop was greater than 10 megapascals. This devastating event began with a slow rupture propagation lasting 15 to 20 seconds near its hypocenter, where seismic swarms had surged since 2020 because of lower-crust fluid supply. The slow start was accompanied by intense high-frequency seismic radiation. These observations suggest a distinct coseismic slip mode reflecting high heterogeneity in fault properties within a fluid-rich fault zone.

13.
Clin Rheumatol ; 43(8): 2573-2584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937388

RESUMEN

OBJECTIVE: The clinical manifestations of systemic sclerosis (SSc) are highly variable, resulting in varied outcomes and complications. Diverse fibrosis of the skin and internal organs, vasculopathy, and dysregulated immune system lead to poor and varied prognoses in patients with SSc subtypes. Therefore, this study aimed to develop a personalized tool for predicting the prognosis of patients with SSc. METHODS: A cohort of 517 patients with SSc were recruited between January 2009 and November 2021 at Xijing Hospital in China, and 266 patients completed the follow-up and performed in the survival analysis. Risk factors for death were identified using Cox survival analysis and random survival forest-based machine-learning methods separately. The consistency index, area under the curve (AUC), and integrated Brier scores were used to compare the predictive performance of the different prognostic models. RESULTS: The results of Cox-based multivariate regression analysis suggested that pulmonary arterial hypertension, digital ulcer, and Modified Rodnan Skin Score (mRSS) were independent risk factors for poor prognosis in patients with SSc and significant risk factors in random survival forest (RSF) surveys. A nomogram was plotted to evaluate the prognostic risk to facilitate clinical assessment; the RSF model had better predictive performance than the Cox model, with 3- and 5-year AUCs of 0.74 and 0.78, respectively. CONCLUSION: Machine-learning models can help us better understand the prognosis of patients with SSc and comprehensively evaluate the clinical characteristics of each individual. The early identification of the characteristics of high-risk patients can improve the prognosis of those with SSc. Key Points • Regarding predictive performance, the random survival forest model was more effective than the Cox model and had unique advantages in analyzing nonlinear effects and variable importance. • Machine learning using the simple clinical features of patients with systemic sclerosis (SSc) to predict mortality can guide attending physicians, and the early identification of high-risk patients with SSc and referral to experts will assist rheumatologists in monitoring and management planning.


Asunto(s)
Aprendizaje Automático , Esclerodermia Sistémica , Esclerodermia Sistémica/mortalidad , Humanos , Femenino , Persona de Mediana Edad , Masculino , Pronóstico , Adulto , Factores de Riesgo , Modelos de Riesgos Proporcionales , Nomogramas , China/epidemiología , Análisis de Supervivencia , Anciano
14.
ACS Appl Mater Interfaces ; 16(25): 31936-31949, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869429

RESUMEN

Minimally invasive embolization greatly decreases the mortality resulting from vascular injuries while still suffering from a high risk of recanalization and systematic thrombosis due to the intrinsic hydrophobicity and poor adhesion of the clinically used liquid embolic agent of Lipiodol. In this study, a shape self-adaptive liquid embolic agent was developed by mixing biocompatible poly(acrylic acid) (PAA), two-dimensional magnesium-aluminum layered double hydroxide (LDH), and poly(ethylene glycol)200 (PEG200). Upon contact with blood, the injectable PAA-LDH@PEG200 would quickly absorb water to form an adhesive and mechanically strong PAA-LDH thin hydrogel within 5 s, which could firmly adhere to the blood vessel wall for ultrafast and durable embolization. In addition, benefiting from the "positively charged nucleic center effect" of LDH nanosheets, the liquid PAA-LDH@PEG200 could avoid vascular distension by PAA overexpansion and possess high shock-resistant mechanical strength from the blood flow. Furthermore, both in vitro and in vivo embolization experiments demonstrated the complete embolic capacity of liquid PAA-LDH@PEG200 without the occurrence of recanalization for 28 days and also the great potential to act as a platform to couple with chemotherapeutic drugs for the minimized transcatheter arterial chemoembolization (TACE) treatment of VX2 tumors without recurrence for 18 days. Thus, liquid PAA-LDH@PEG200 developed here possesses great potential to act as a shape self-adaptive liquid embolic agent for ultrafast and durable vascular embolization.


Asunto(s)
Polietilenglicoles , Animales , Polietilenglicoles/química , Ratones , Resinas Acrílicas/química , Embolización Terapéutica/métodos , Humanos , Hidróxidos/química , Hidróxidos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Aluminio/química
15.
ACS Nano ; 18(19): 12401-12411, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701333

RESUMEN

Accurate identification of single nucleotide variants (SNVs) in key driver genes holds a significant value for disease diagnosis and treatment. Fluorescent probes exhibit tremendous potential in specific, high-resolution, and rapid detection of SNVs. However, additional steps are required in most post-PCR assays to convert double-stranded DNA (dsDNA) products into single-stranded DNA (ssDNA), enabling them to possess hybridization activity to trigger subsequent reactions. This process not only prolongs the complexity of the experiment but also introduces the risk of losing target information. In this study, we proposed two strategies for enriching active double-stranded DNA, involving PCR based on obstructive groups and cleavable units. Building upon this, we explored the impact of modified units on the strand displacement reaction (SDR) and assessed their discriminatory efficacy for mutations. The results showed that detection of low variant allele frequencies (VAF) as low as 0.1% can be achieved. The proposed strategy allowed orthogonal identification of 45 clinical colorectal cancer tissue samples with 100% specificity, and the results were generally consistent with sequencing results. Compared to existing methods for enriching active targets, our approach offers a more diverse set of enrichment strategies, characterized by the advantage of being simple and fast and preserving original information to the maximum extent. The objective of this study is to offer an effective solution for the swift and facile acquisition of active double-stranded DNA. We anticipate that our work will facilitate the practical applications of SDR based on dsDNA.


Asunto(s)
ADN , Polimorfismo de Nucleótido Simple , Polimorfismo de Nucleótido Simple/genética , Humanos , ADN/genética , ADN/química , Neoplasias Colorrectales/genética , Reacción en Cadena de la Polimerasa , Colorantes Fluorescentes/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/química
16.
Food Res Int ; 187: 114316, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763629

RESUMEN

This study investigates the dynamic changes in the aroma profile of Tuo tea during long-term storage, a process not well understood yet critical to the formation of aged tea's unique characteristics. Aroma profiling of Tuo tea samples stored for 2 to 25 years was conducted using sensory evaluation and the HS-SPME/GC × GC-QTOFMS technique, revealing a progressive transition from fresh, fruity, and floral scents to more stale, woody, and herbal notes. Among 275 identified volatiles, 55 were correlated with storage duration (|r| > 0.8, p < 0.05), and 49 differential compounds (VIP > 1, FC > 1.2, FC < 0.833, p < 0.05) were identified across three storage stages (2-4, 5-10, and 13-25 years). Furthermore, theaspirane, eucalyptol, o-xylene, and 1-ethylidene-1H-indene were selected as potential markers of Tuo tea aging, incorporating the implementation of a Random Forest (RF) model. Additionally, our model exhibited high accuracy in predicting the age of Tuo tea within a prediction error range of -2.51 to 2.84 years. This research contributes to a comprehensive understanding of the impact of storage time on tea aroma and aids in the precise identification of tea age.


Asunto(s)
Almacenamiento de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Odorantes , , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis , Almacenamiento de Alimentos/métodos , Factores de Tiempo , Humanos , Camellia sinensis/química , Microextracción en Fase Sólida
17.
Nanotechnology ; 35(30)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653210

RESUMEN

The revelation of MoS2as an efficient electromagnetic wave (EMW) absorbing material has ratcheted up people's attention to other transition metal dichalcogenides (TMDs). To date, extensive studies have been conducted on the semiconducting VIB-Group TMDs while research into metallic VB-Group TMDs has been relatively rare. In this work, we successfully fabricated VB-Group VSe2microspheres through a facile one-step hydrothermal method and used them as EMW absorbers. The flowerlike VSe2microspheres based on VSe2nanosheets exhibited a minimum reflection loss of 46.58 dB with an effective absorption bandwidth of 4.86 GHz. The influence of material morphology, microstructure, and dielectric properties on the EMW absorption performance was systematically investigated. The hierarchically layered structure promoted dielectric loss and EMW absorption by means of multiple reflection, interfacial polarization and related relaxation, and enhanced attenuation ability. This work not only demonstrates that VSe2is potentially a high-efficiency single component EMW absorber, but also provides fresh insights into exploration on the EMW loss mechanisms of the metallic TMD-based absorbing materials.

18.
Front Oncol ; 14: 1378405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665942

RESUMEN

Background: The simultaneous occurrence of Branchial Cleft Cyst (BCC) and Papillary Thyroid Carcinoma (PTC) represents an unusual malignant tumor, with cases featuring associated lymph node metastasis being particularly rare. This combination underscores an increased potential for metastasis, and the assessment of neck masses, particularly on the lateral aspect, may inadvertently overlook the scrutiny of the thyroid. Therefore, healthcare providers should exercise vigilance, especially in patients over the age of 40, regarding the potential for neck masses to signify metastasis from thyroid malignancies. Currently, surgical intervention stands as the primary effective curative method, while the postoperative administration of radioactive iodine therapy remains a topic of ongoing debate. Case report: In the presented case, a 48-year-old male patient with a right neck mass underwent surgical intervention. The procedure included the excision of the right neck mass, unilateral thyroidectomy with isthmus resection, and functional neck lymph node dissection under tracheal intubation and general anesthesia. Postoperative pathology findings revealed the coexistence of a BCC with metastatic PTC in the right neck mass, as well as papillary carcinoma in the right thyroid lobe. Lymph node metastasis was observed in the central and levels III of the right neck. Conclusion: The rare amalgamation of a BCC with PTC and concurrent lymph node metastasis underscores the invasive nature of this malignancy. Healthcare professionals should be well-acquainted with its clinical presentation, pathological characteristics, and diagnostic criteria. A multidisciplinary approach is strongly recommended to enhance patient outcomes.

19.
ACS Appl Mater Interfaces ; 16(13): 15783-15797, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38497300

RESUMEN

DNA nanostructures (DNs) have found increasing use in biosensing, drug delivery, and therapeutics because of their customizable assembly, size and shape control, and facile functionalization. However, their limited cellular uptake and nuclear delivery have hindered their effectiveness in these applications. Here, we demonstrate the potential of applying cell-surface binding as a general strategy to enable rapid enhancement of intracellular and intranuclear delivery of DNs. By targeting the plasma membrane via cholesterol anchors or the cell-surface glycocalyx using click chemistry, we observe a significant 2 to 8-fold increase in the cellular uptake of three distinct types of DNs that include nanospheres, nanorods, and nanotiles, within a short time frame of half an hour. Several factors are found to play a critical role in modulating the uptake of DNs, including their geometries, the valency, positioning and spacing of binding moieties. Briefly, nanospheres are universally preferable for cell surface attachment and internalization. However, edge-decorated nanotiles compensate for their geometry deficiency and outperform nanospheres in both categories. In addition, we confirm the short-term structural stability of DNs by incubating them with cell medium and cell lysate. Further, we investigate the endocytic pathway of cell-surface bound DNs and reveal that it is an interdependent process involving multiple pathways, similar to those of unmodified DNs. Finally, we demonstrate that cell-surface attached DNs exhibit a substantial enhancement in the intranuclear delivery. Our findings present an application that leverages cell-surface binding to potentially overcome the limitations of low cellular uptake, which may strengthen and expand the toolbox for effective cellular and nuclear delivery of DNA nanostructure systems.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Nanoestructuras/química , Membrana Celular/metabolismo , Sistemas de Liberación de Medicamentos
20.
Food Chem ; 448: 139090, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547714

RESUMEN

Baked oyster is a popular seafood dish around the world. The present study investigated the effect of various concentrations of a green-tea extract (GTE) marinade on the safety and sensory profiles of oysters baked for different durations. The results showed 10 g/L of GTE and 10-min baking time was the optimal combination, as supported by significantly attenuated lipid oxidation (35.29 %) and Nε-(carboxyethyl)lysine (CEL) content (48.51 %) without appreciable negative impact on the sensory or nutritional quality of the oysters. However, high concentrations of the marinade or prolonged baking promoted protein oxidation and Nε-(carboxymethyl)lysine (CML) formation likely through the pro-oxidative action of the GTE phytochemicals. Correlation analysis further revealed the main factors that affected CML, CEL, and fluorescent AGEs generation, respectively. These findings provide theoretical support for the protective effect and mechanism of GTE against quality deterioration of baked oysters and would help broaden the application of GTE in the food industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...