Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
1.
Transl Oncol ; 47: 101950, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38964032

RESUMEN

BACKGROUND: Pulmonary sarcomatoid carcinoma (PSC) is a highly invasive pulmonary malignancy with an extremely poor prognosis. The results of previous studies suggest that ubiquitin-specific peptidase 9X (USP9X) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of USP9X in the metastasis of PSC. METHODS: Immunohistochemistry and western blotting were used to detect USP9X expression levels in PSC tissues and cells. Wound healing, transwell, enzyme-linked immunosorbent assay (ELISA), tube formation, and aortic ring assays were used to examine the function and mechanism of USP9X in the metastasis of PSC. RESULTS: Expression of USP9X was markedly decreased and significantly correlated with metastasis and prognosis of patients with PSC. Then we revealed that USP9X protein levels were negatively associated with the levels of epithelial-mesenchymal transition (EMT) markers and the migration of PSC cells. It was confirmed that USP9X in PSC cells reduced VEGF secretion and inhibited tubule formation of human umbilical vein endothelial cells (HUVEC) in vitro. USP9X was detected to downregulate MMP9. Meanwhile, MMP9 was positively related to EMT, angiogenesis and was negatively related to immune infiltration in the public databases. USP9X was significantly negatively associated with the expression of MMP9, EMT markers, CD31, and positively associated with CD4, and CD8 in PSC tissues. CONCLUSION: The present study reveals the vital role of USP9X in regulating EMT, angiogenesis and immune infiltration and inhibiting metastasis of PSC via downregulating MMP9, which provides a new effective therapeutic target for PSC.

2.
BMC Plant Biol ; 24(1): 631, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965467

RESUMEN

BACKGROUND: DNA methylation contributes to the epigenetic regulation of nuclear gene expression, and is associated with plant growth, development, and stress responses. Compelling evidence has emerged that long non-coding RNA (lncRNA) regulates DNA methylation. Previous genetic and physiological evidence indicates that lncRNA-CRIR1 plays a positive role in the responses of cassava plants to cold stress. However, it is unclear whether global DNA methylation changes with CRIR1-promoted cold tolerance. RESULTS: In this study, a comprehensive comparative analysis of DNA methylation and transcriptome profiles was performed to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression. Compared with the wild-type plants, CRIR1-overexpressing plants present gained DNA methylation in over 37,000 genomic regions and lost DNA methylation in about 16,000 genomic regions, indicating a global decrease in DNA methylation after CRIR1 overexpression. Declining DNA methylation is not correlated with decreased/increased expression of the DNA methylase/demethylase genes, but is associated with increased transcripts of a few transcription factors, chlorophyll metabolism and photosynthesis-related genes, which could contribute to the CRIR1-promoted cold tolerance. CONCLUSIONS: In summary, a first set of transcriptome and epigenome data was integrated in this study to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression, with the identification of several TFs, chlorophyll metabolism and photosynthesis-related genes that may be involved in CRIR1-promoted cold tolerance. Therefore, our study has provided valuable data for the systematic study of molecular insights for plant cold stress response.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , ARN Largo no Codificante/genética , Epigenoma , Respuesta al Choque por Frío/genética , Frío
3.
Angew Chem Int Ed Engl ; : e202407430, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884885

RESUMEN

The Cu-glutathione (GSH) redox system, essential in biology, is designed here as a supramacromolecular assembly in which the tetrahedral 18e Cu(I) center loses a thiol ligand upon adsorption onto ZIF-8, as shown by EXAFS and DFT calculation, to generate a very robust 16e planar trigonal single-atom Cu(I) catalyst. Synergy between Cu(I) and ZIF-8, revealed by catalytic experiments and DFT, affords CO2 conversion into high-value-added chemicals with a wide scope of substrates by reaction with terminal alkynes or propargyl amines in excellent yields under mild conditions and reuse at least 10 times without significant decrease in catalytic efficiency.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38896281

RESUMEN

PURPOSE: To investigate the factors associated with and impact on the femtosecond-assisted (FS-assisted) limbal relaxing incision (LRI) combined with the steep-meridian tri-planar clear corneal incision (TCCI) to reduce astigmatism in patients undergoing Implantable Collamer Lens (ICL) surgery. METHODS: Retrospective case series. The study reviewed patients with ICL surgery combined with FS-assisted LRIs paired with steep-meridian TCCIs. Correlation analysis examined the relationship between independent variables, including preoperative characteristics (intraocular pressure, corneal thickness, axial length, et al.), TCCI, and LRI surgical parameters. The predictors of surgically induced astigmatism (SIA) were determined using individual-level analysis and accounting for inter-eye correlation with the generalized estimating equation (GEE). RESULTS: The study enrolled 69 patients, with 114 eyes (55 right and 59 left). The mean spherical equivalent (SEQ) was - 10.29 ± 2.99D and - 9.99 ± 2.72D for the right and left eye, respectively, while the mean preoperative corneal astigmatism was - 1.54 ± 0.47D and - 1.54 ± 0.46D for the right and left eyes, respectively. After 12 months of follow-up, univariate analysis revealed significant correlations between SIA and intraocular pressure (IOP), astigmatism type, TCCI position (degree), peripheral corneal thickness (PCT), LRI arc incision diameter, post depth (%), and angle, respectively (P = 0.046, 0.016, 0.039, 0.040, 0.009, 0.000, 0.000). Multivariate analysis using GEE demonstrated that axial length (AL), astigmatism type, LRI arc diameter, and angle were independent predictors of SIA (P = 0.000, 0.005, 0.029, 0.000). CONCLUSIONS: The type of astigmatism and axial length were independent factors that affected SIA when modifying the LRI arc diameter and angle through FS-assisted steep-meridian TCCI paired with LRI in ICL surgery.

5.
Circ Res ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873758

RESUMEN

BACKGROUND: Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. Apart from Parkin, little is known about additional Ub (ubiquitin) ligases that mediate mitochondrial ubiquitination and turnover, particularly in highly metabolically active organs such as the heart. METHODS: In this study, we have combined in silico analysis and biochemical assay to identify CRL (cullin-RING ligase) 5 as a mitochondrial Ub ligase. We generated cardiomyocytes and mice lacking RBX2 (RING-box protein 2; also known as SAG [sensitive to apoptosis gene]), a catalytic subunit of CRL5, to understand the effects of RBX2 depletion on mitochondrial ubiquitination, mitophagy, and cardiac function. We also performed proteomics analysis and RNA-sequencing analysis to define the impact of loss of RBX2 on the proteome and transcriptome. RESULTS: RBX2 and CUL (cullin) 5, 2 core components of CRL5, localize to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, increased cardiomyocyte cell death, and has a global impact on the mitochondrial proteome. In vivo, deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to the rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. The action of RBX2 in mitochondria is not dependent on Parkin, and Parkin gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. CONCLUSIONS: These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that regulates mitophagy and cardiac homeostasis in a Parkin-independent, PINK1-dependent manner.

6.
Front Immunol ; 15: 1358602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863699

RESUMEN

Hepatocellular carcinoma (HCC) ranks as the sixth most common malignancy globally, with the majority of patients presenting at the initial diagnosis with locally advanced or metastatic disease, precluding the opportunity for curative surgical intervention. With the exploration and advancement of locoregional treatments, novel molecular-targeted therapies, anti-angiogenic agents, and immunomodulatory drugs, the management of HCC has seen an increase in objective response rates and prolonged duration of response significantly enhancing the potential for conversion to resectable disease in intermediate and advanced-stage unresectable HCC. Herein, we present a case of Barcelona Clinic Liver Cancer stage B unresectable HCC, where after two courses of treatment with transarterial chemoembolization combined with atezolizumab plus bevacizumab significant tumor reduction was achieved. Per Response Evaluation Criteria in Solid Tumors 1.1, partial response culminated in successful curative surgical resection. No drug-related adverse reactions occurred during hospitalization, and there has been no recurrence during the 11-month postoperative follow-up. For patients with Barcelona Clinic Liver Cancer stage B (intermediate-stage) unresectable HCC, the transarterial chemoembolization combined with atezolizumab plus bevacizumab regimen may offer improved therapeutic outcomes leading to a higher success rate of conversion therapy and, thus, improved survival.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Bevacizumab/administración & dosificación , Bevacizumab/uso terapéutico , Quimioembolización Terapéutica/métodos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Masculino , Estadificación de Neoplasias , Persona de Mediana Edad , Resultado del Tratamiento , Terapia Combinada
7.
Heliyon ; 10(11): e31871, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868032

RESUMEN

Background: Transient receptor potential melastatin 4 (TRPM4) affects immune responses by regulating calcium homeostasis, but its role in calcific aortic valve inflammation remains unclear. This study aimed to assess the expression and function of TRPM4 in patients with or without calcific aortic valve disease (CAVD). Methods: The mRNA and protein expression levels of TRPM4 and related factors in calcified and noncalcified tissues were measured using qRT-PCR and Western blot. The proteins interacting with TRPM4 were confirmed by RNA pull-down and RNA immunoprecipitation assays. Dual-Luciferase Reporter Assay was performed to confirm the m6A site of TRPM4. Results: The mRNA expression levels of TRPM4, TLR4, IL-6, MCP-1, TNF-α, and NF-κB p65 were significantly higher in calcified aortic valve tissues than in noncalcified tissues, and TRPM4 was significantly positively correlated with inflammation-related factors. The protein expression level of TRPM4, TLR4 and NF-κB p65 were significantly higher in calcified aortic valve tissues than in noncalcified tissues. N6-methyladenosine (m6A) modification of TRPM4 mRNA by METTL3-YTHDF1 up-regulated its expression in CAVD. And TRPM4 promoted the level of inflammation via activation of the JNK-MAPK signaling pathway, after knockdown TRPM4, the production of proinflammatory cytokines was significantly suppressed. Conclusion: The results indicate the pivotal role of TRPM4 in CAVD and highlight METTL3-mediated m6A modification of TRPM4 in promoting inflammation through JNK-MAPK signaling pathway. This work provides potential therapeutic strategy to impede inflammation in CAVD.

8.
Environ Int ; 189: 108792, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838487

RESUMEN

Methylmercury (MeHg) exposure via rice consumption poses health risk to residents in mercury contaminated areas, such as the Wanshan Hg mining area (WSMA) in southwest China. Making use of the published data for WSMA, this study developed a database of rice MeHg concentrations for different villages in this region for the years of 2007, 2012, 2017, and 2019. The temporal changes of human MeHg exposure, health effects, and economic benefits under different ecological remediation measures were then assessed. Results from this study revealed a decrease of 3.88 µg/kg in rice MeHg concentration and a corresponding reduction of 0.039 µg/kg/d in probable daily intake of MeHg in 2019 compared to 2007 on regional average in the WSMA. Ecological remediation measures in this region resulted in the accumulated economic benefits of $38.7 million during 2007-2022, of which 84 % was from pollution source treatment and 16 % from planting structure adjustment. However, a flooding event in 2016 led to an economic loss of $2.43 million (0.38 % of regional total Gross Domestic Product). Planting structure adjustment generates the greatest economic benefits in the short term, whereas pollution source treatment maximizes economic benefits in the long term and prevents the perturbations from flooding event. These findings demonstrate the importance of ecological remediation measures in Hg polluted areas and provide the foundation for risk assessment of human MeHg exposure via rice consumption.


Asunto(s)
Restauración y Remediación Ambiental , Mercurio , Compuestos de Metilmercurio , Oryza , China , Restauración y Remediación Ambiental/métodos , Restauración y Remediación Ambiental/economía , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Humanos , Minería , Contaminación Ambiental , Contaminación de Alimentos/análisis , Monitoreo del Ambiente , Exposición a Riesgos Ambientales
9.
Ultrasound Med Biol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38910034

RESUMEN

BACKGROUND: Ultrasound image examination has become the preferred choice for diagnosing metabolic dysfunction-associated steatotic liver disease (MASLD) due to its non-invasive nature. Computer-aided diagnosis (CAD) technology can assist doctors in avoiding deviations in the detection and classification of MASLD. METHOD: We propose a hybrid model that integrates the pre-trained VGG16 network with an attention mechanism and a stacking ensemble learning model, which is capable of multi-scale feature aggregation based on the self-attention mechanism and multi-classification model fusion (Logistic regression, random forest, support vector machine) based on stacking ensemble learning. The proposed hybrid method achieves four classifications of normal, mild, moderate, and severe fatty liver based on ultrasound images. RESULT AND CONCLUSION: Our proposed hybrid model reaches an accuracy of 91.34% and exhibits superior robustness against interference, which is better than traditional neural network algorithms. Experimental results show that, compared with the pre-trained VGG16 model, adding the self-attention mechanism improves the accuracy by 3.02%. Using the stacking ensemble learning model as a classifier further increases the accuracy to 91.34%, exceeding any single classifier such as LR (89.86%) and SVM (90.34%) and RF (90.73%). The proposed hybrid method can effectively improve the efficiency and accuracy of MASLD ultrasound image detection.

10.
Microorganisms ; 12(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930628

RESUMEN

Magnaporthe oryzae, one of the most destructive rice pathogens, causes significant losses during the rice harvest every year. Bacillus amyloliquefaciens has been explored in many crops as a potential biocontrol agent. However, the mechanisms of B. amyloliquefaciens controled rice blast are not fully understood. Here, a biocontrol strain LM-1, isolated from a contaminated medium, was identified as B. amyloliquefaciens using morphological observation, physiological and biochemical tests, and 16S rDNA sequencing. LM-1 inhibited the growth and pathogenicity of M. oryzae and Bipolaris oryzae (Breda de Haan) Shoem. The mycelia of M. oryzae co-cultured with LM-1 were enlarged and broken by fluorescence microscopy using calcofluor white. LM-1 inhibited the mycelia of M. oryzae from producing conidia. Genes itu, srf, and fenB were detected in LM-1. Furthermore, the supernatant of LM-1 interfered with the appressorium formation of M. oryzae, blocked conidial cell death, and reduced autophagy degradation but did not affect the normal germination of rice seeds and seeding growth. Additionally, we observed hypersensitivity reactions, reactive oxygen species, and iron accumulation reduction in rice cells inoculated with supernatant. Our study reveals that LM-1 has a control effect on rice blast and affects cell wall integrity, sporulation, appressorium formation, cell death, and autophagy.

11.
Cardiorenal Med ; 14(1): 334-349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801815

RESUMEN

INTRODUCTION: Large prospective trials have demonstrated that finerenone could reduce the risk of cardiovascular death and progression of renal failure among patients with chronic kidney disease associated heart failure and/or type 2 diabetes mellitus (T2DM). The aim of this study was to explore the molecular mechanism of finerenone in the treatment of cardiorenal diseases through network pharmacology. METHODS: The STITH, SwissTargetPrediction, PharmMapper, DrugBank, and ChEMBL databases were used to screen the targets of finerenone. The disease-related targets were retrieved from the DisGeNET, GeneCards, CTD, OMIM, and MalaCards databases. The protein-protein interaction (PPI) network was conducted with STRING database and Cytoscape software. The clusterProfiler R package was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The interactions of key targets and finerenone were analyzed by molecular docking in Autodock software. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin. Histopathology of myocardial and renal tissues was observed by hematoxylin-eosin (HE) staining, and detection of protein expressions was conducted using Western blotting. RESULTS: A total of 111 potential cardiorenal targets of finerenone were identified. The main mechanisms of action may be associated with lipids and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, and diabetic cardiomyopathy. The hub targets demonstrated by the PPI network were CASP3, ALB, MMP9, EGFR, ANXA5, IGF1, SRC, TNFRSF1A, IL2, and PPARG, and the docking results suggested that finerenone could bind to these targets with high affinities. HE staining revealed the cardiorenal protection of finerenone on diabetic mice. In addition, the protein expressions of CASP3 and EGFR were increased while ALB was decreased in myocardial and renal tissues in diabetic mice compared with control mice, which were reversed by finerenone. CONCLUSION: This study suggested that finerenone exerts cardiorenal benefits through multiple targets and pathways.


Asunto(s)
Diabetes Mellitus Experimental , Simulación del Acoplamiento Molecular , Naftiridinas , Farmacología en Red , Naftiridinas/farmacología , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Mapas de Interacción de Proteínas , Masculino , Receptores ErbB/metabolismo , Receptores ErbB/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico
12.
J Cancer Res Clin Oncol ; 150(5): 283, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806870

RESUMEN

OBJECTIVE: The aim of this study is to assess the clinical efficacy of a 5 mg dosage of olanzapine in preventing chemotherapy-induced nausea and vomiting (CINV) associated with moderately emetogenic chemotherapy (MEC) among female patients diagnosed with gastrointestinal tract tumors. METHODS: Patients undergoing the oxaliplatin/irinotecan chemotherapy regimen were enrolled in this prospective controlled study. The olanzapine group received a 5 mg dosage of olanzapine along with palonosetron and dexamethasone, while the control group received a standard two-combination regimen consisting of dexamethasone and palonosetron. The primary endpoints included the total protection (TP) rates for the entire age group and the subgroup aged 60 years and above. Secondary endpoints encompassed the total protection rates during the acute and delayed phases within the two age brackets, as well as the total control (TC) rates and complete remission (CR) rates across all three phases (total, acute, and delayed). Additionally, the study involved the assessment of quality of life and the collection of adverse events associated with the interventions. RESULTS: 1) Regarding the primary endpoint, the total phase TP rates within both the entire age group and the age group exceeding 60 years demonstrated superiority in the olanzapine group when compared to the control group (66.7% vs 37.25%, P = 0.003; 68.8% vs 44.4%, P = 0.044). 2) In terms of secondary endpoints, the olanzapine group exhibited superior acute phase TP rates in both age brackets when compared to the control group (P < 0.05). The olanzapine group also demonstrated higher delayed-phase TP rates, TC rates across all three phases, and CR rates within the two age brackets, although the differences were not statistically significant (P > 0.05). Furthermore, the quality of life in the olanzapine group surpassed that of the control group for both age brackets (P < 0.05), characterized by enhanced appetite and a higher incidence of drowsiness in the patients treated with olanzapine when compared to those in the control group (P < 0.05). CONCLUSION: Olanzapine can enhance CINV induced by MEC regimen in female patients across all age groups, including the elderly, and therefore improve the quality of life for these patients. CLINICAL TRIAL REGISTRATION: https://www.chictr.org.cn/index.html , identifier: ChiCTR20000368269, 25/08/2020.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Irinotecán , Náusea , Olanzapina , Oxaliplatino , Vómitos , Humanos , Olanzapina/administración & dosificación , Olanzapina/uso terapéutico , Olanzapina/efectos adversos , Femenino , Persona de Mediana Edad , Náusea/inducido químicamente , Náusea/prevención & control , Vómitos/inducido químicamente , Vómitos/prevención & control , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Estudios Prospectivos , Oxaliplatino/efectos adversos , Oxaliplatino/administración & dosificación , Irinotecán/efectos adversos , Irinotecán/administración & dosificación , Anciano , Adulto , Antieméticos/administración & dosificación , Antieméticos/uso terapéutico , Neoplasias Gastrointestinales/tratamiento farmacológico , Palonosetrón/administración & dosificación , Palonosetrón/uso terapéutico , Calidad de Vida , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico
13.
J Nanobiotechnology ; 22(1): 299, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812031

RESUMEN

BACKGROUND: Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity. One of the primary hurdles lies in the elevated levels of intracellular glutathione (GSH). Presently, predominant methods to mitigate intracellular GSH involve inhibiting its synthesis or promoting GSH efflux. However, a conspicuous gap remains in the absence of a strategy capable of directly and efficiently clearing GSH. METHODS: We initially elucidated the chemical mechanism underpinning oridonin, a diminutive pharmacological agent demonstrated to perturb reactive oxygen species, through its covalent interaction with glutathione. Subsequently, we employed the incorporation of maleimide-liposomes, renowned for their capacity to disrupt the ROS delivery system, to ameliorate the drug's water solubility and pharmacokinetics, thereby enhancing its ROS-disruptive efficacy. In a pursuit to further refine the targeting for acute myeloid leukemia (AML), we harnessed the maleic imide and thiol reaction mechanism, facilitating the coupling of Toll-like receptor 2 (TLR2) peptides to the liposomes' surface via maleic imide. This strategic approach offers a novel method for the precise removal of GSH, and its enhancement endeavors are directed towards fortifying the precision and efficacy of the drug's impact on AML targets. RESULTS: We demonstrated that this peptide-liposome-small molecule machinery targets AML and consequently induces cell apoptosis both in vitro and in vivo through three disparate mechanisms: (I) Oridonin, as a Michael acceptor molecule, inhibits GSH function through covalent bonding, triggering an initial imbalance of oxidative stress. (II) Maleimide further induces GSH exhaustion, aggravating redox imbalance as a complementary augment with oridonin. (III) Peptide targets TLR2, enhances the directivity and enrichment of oridonin within AML cells. CONCLUSION: The rationally designed nanocomplex provides a ROS drug enhancement and targeted delivery platform, representing a potential solution by disrupting redox balance for AML therapy.


Asunto(s)
Diterpenos de Tipo Kaurano , Glutatión , Leucemia Mieloide Aguda , Liposomas , Especies Reactivas de Oxígeno , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/farmacología , Glutatión/metabolismo , Glutatión/química , Liposomas/química , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Línea Celular Tumoral , Receptor Toll-Like 2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos
14.
Research (Wash D C) ; 7: 0373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803506

RESUMEN

Gout, a common form of arthritis, is characterized by the deposition of monosodium urate (MSU) crystals in joints. MSU deposition in synovial tissues would initiate arthritis flares and recurrence, causing irreversible joint damage. However, the dynamic deposition of MSU crystals in tissues lacks experimental observation. In this study, we used chemical-specific, label-free stimulated Raman scattering (SRS) microscopy to investigate the spatiotemporal deposition and morphological characteristics of MSU crystals in human synovial organoids. Our findings revealed a critical 12-h window for MSU deposition in the lining layer of gouty synovium. Moreover, distinctive inflammatory reactions of the lining and sublining synovial layers in gout using SRS microscopy were further verified by immunofluorescence. Importantly, we identified a crucial proinflammatory role of sublining fibroblast-like synoviocytes, indicating a need for targeted medication treatment on these cells. Our work contributes to the fundamental understanding of MSU-based diseases and offers valuable insights for the future development of targeted gout therapies.

15.
Hum Cell ; 37(4): 1056-1069, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744794

RESUMEN

Epithelial mesenchymal transition (EMT) occurring in retinal pigment epithelial cells (RPE) is a crucial mechanism that contributes to the development of age-related macular degeneration (AMD), a pivotal factor leading to permanent vision impairment. Long non-coding RNAs (lncRNAs) have emerged as critical regulators orchestrating EMT in RPE cells. In this study, we explored the function of the lncRNA CYTOR (cytoskeleton regulator RNA) in EMT of RPE cells and its underlying mechanisms. Through weighted correlation network analysis, we identified CYTOR as an EMT-related lncRNA associated with AMD. Experimental validation revealed that CYTOR orchestrates TGF-ß1-induced EMT, as well as proliferation and migration of ARPE-19 cells. Further investigation demonstrated the involvement of CYTOR in regulating the WNT5A/NFAT1 pathway and NFAT1 intranuclear translocation in the ARPE-19 cell EMT model. Mechanistically, CHIP, EMSA and dual luciferase reporter assays confirmed NFAT1's direct binding to CYTOR's promoter, promoting transcription. Reciprocally, CYTOR overexpression promoted NFAT1 expression, while NFAT1 overexpression increased CYTOR transcription. These findings highlight a mutual promotion between CYTOR and NFAT1, forming a positive feedback loop that triggers the EMT phenotype in ARPE-19 cells. These discoveries provide valuable insights into the molecular mechanisms of EMT and its association with AMD, offering potential avenues for targeted therapies in EMT-related conditions, including AMD.


Asunto(s)
Transición Epitelial-Mesenquimal , Retroalimentación Fisiológica , Degeneración Macular , Factores de Transcripción NFATC , ARN Largo no Codificante , Epitelio Pigmentado de la Retina , Transición Epitelial-Mesenquimal/genética , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , ARN Largo no Codificante/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/etiología , Expresión Génica/genética , Proliferación Celular/genética , Movimiento Celular/genética , Factor de Crecimiento Transformador beta1/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Epiteliales/metabolismo , Línea Celular , Células Cultivadas
16.
Behav Brain Res ; 469: 115047, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38759799

RESUMEN

Hyperalgesia occurs in the orofacial region of rats when estrogen levels are low, although the specific mechanism needs to be investigated further. Furthermore, oxidative stress plays an important role in the transmission of pain signals. This study aimed to explore the role of oxidative stress in orofacial hyperalgesia under low estrogen conditions. We firstly found an imbalance between oxidative and antioxidant capacity within the spinal trigeminal subnucleus caudalis (SP5C) of rats after ovariectomy (OVX), resulting in oxidative stress and then a decrease in the orofacial pain threshold. To investigate the mechanism by which oxidative stress occurs, we used virus as a tool to silence or overexpress the excitatory amino acid transporter 3 (EAAT3) gene. Further investigation revealed that the regulation of glutathione (GSH) and reactive oxygen species (ROS) can be achieved by regulating EAAT3, which in turn impacts the occurrence of oxidative stress. In summary, our findings suggest that reduced expression of EAAT3 within the SP5C of rats in the low estrogen state may decrease GSH content and increase ROS levels, resulting in oxidative stress and ultimately lead to orofacial hyperalgesia. This suggests that antioxidants could be a potential therapeutic direction for orofacial hyperalgesia under low estrogen conditions, though more research is needed to understand its mechanism.


Asunto(s)
Estrógenos , Transportador 3 de Aminoácidos Excitadores , Dolor Facial , Glutatión , Hiperalgesia , Ovariectomía , Estrés Oxidativo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Animales , Hiperalgesia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Femenino , Estrógenos/metabolismo , Estrógenos/farmacología , Dolor Facial/metabolismo , Glutatión/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Núcleo Caudal del Trigémino/metabolismo , Núcleo Caudal del Trigémino/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo
17.
J Org Chem ; 89(11): 7812-7820, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38779840

RESUMEN

In this paper, the regioselectivity of electrochemical Co(II)-catalyzed [2 + 2 + 2] cycloaddition of terminal alkynes was investigated using density functional theory. We explored in detail the energy profiles for both 1,2,4- and 1,3,5-regioselectivity pathways and revealed the origin of the regioselectivity. Two kinds of conformational isomers derived from the different coordination modes of alkynes with cobaltacyclopentadiene have been found, which were formed through electrochemically mediated redox processes. The regioselectivity of the reaction depends on the two coordination modes. When the Co(II) center attacks α-C of the third alkyne, while ß2-C in cyclopentadiene bonds to ß-C of the alkyne, the reaction favors the formation of 1,2,4-products. In contrast, when the Co(II) center connects to ß-C of the alkyne, it forms only the 1,3,5-products via [4 + 2] cycloaddition because of the steric repulsion between the bulky ligand on Co(II) and the phenyl group in the alkyne.

18.
J Phys Chem B ; 128(19): 4621-4630, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38697651

RESUMEN

Thymine DNA glycosylase (TDG)-mediated excision of 5-formylcytosine and 5-carboxylcytosine (5-caC) is a critical step in active DNA demethylation. Herein, we employed a combined quantum mechanics/molecular mechanics approach to investigate the reaction mechanism of TDG-catalyzed N-glycosidic bond cleavage of 5-caC. The calculated results show that TDG-catalyzed 5-caC excision follows a concerted (SN2) mechanism in which glycosidic bond dissociation is coupled with nucleophile attack. Protonation of the 5-caC anion contributes to the cleavage of the N-glycoside bond, in which the N3-protonated zwitterion and imino tautomers are more favorable than carboxyl-protonated amino tautomers. This is consistent with the experimental data. Furthermore, our results reveal that the configuration rearrangement process of the protonated 5-caC would lower the stability of the N-glycoside bond and substantially reduce the barrier height for the subsequent C1'-N1 bond cleavage. This should be attributed to the smaller electrostatic repulsion between the leaving base and the negative phosphate group as a result of the structural rearrangement.


Asunto(s)
Citosina , Glicósidos , Teoría Cuántica , Timina ADN Glicosilasa , Timina ADN Glicosilasa/metabolismo , Timina ADN Glicosilasa/química , Citosina/química , Citosina/metabolismo , Citosina/análogos & derivados , Glicósidos/química , Glicósidos/metabolismo , Simulación de Dinámica Molecular
19.
Oncol Rep ; 52(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757398

RESUMEN

Following the publication of the above paper, it was drawn to the Editors' attention by a concerned reader that the data obtained from sphere­forming assay experiments shown in Figs. 4C­F and 8B and C, and western blotting data in Figs. 4A and 8A, were strikingly similar to data appearing in different form in other articles by different authors from different research institutes that had already been published, one of which has been retracted. Moreover, a pair of data panels comparing between Fig. 4E and 8C were partly overlapping, such that these data appear to have been derived from the same original source. Owing to the fact that the contentious data in the above article had already been published elsewhere prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 35: 1204­1212, 2016; DOI: 10.3892/or.2015.4437].

20.
Environ Sci Pollut Res Int ; 31(24): 35553-35566, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733444

RESUMEN

Volatile organic compounds (VOCs) frequently pose a threat to the biosphere, impacting ecosystems, flora, fauna, and the surrounding environment. Industrial emissions of VOCs often include the presence of water vapor, which, in turn, diminishes the adsorption capacity and efficacy of adsorbents. This occurs due to the competitive adsorption of water vapor, which competes with target pollutants for adsorption sites on the adsorbent material. In this study, hydrophobic activated carbons (BMIMPF6-AC (L), BMIMPF6-AC (g), and BMIMPF6-AC-H) were successfully prepared using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) to adsorb toluene under humidity environment. The adsorption performance and mechanism of the resulting ionic liquid-modified activated carbon for toluene in a high-humidity environment were evaluated to explore the potential application of ionic liquids as hydrophobic modifiers. The results indicated that BMIMPF6-AC-H exhibited superior hydrophobicity. The toluene adsorption capacity of BMIMPF6-AC-H was 1.53 times higher than that of original activated carbon, while the adsorption capacity for water vapor was only 37.30% of it at 27 °C and 77% RH. The Y-N model well-fitted the dynamic adsorption experiments. To elucidate the microscopic mechanism of hydrophobic modification, the Independent Gradient Model (IGM) method was employed to characterize the intermolecular interactions between BMIMPF6 and toluene. Overall, this study introduces a new modifier for hydrophobic modification of activated carbon, which could enhance the efficiency of activated carbon in treating industrial VOCs.


Asunto(s)
Humedad , Líquidos Iónicos , Tolueno , Compuestos Orgánicos Volátiles , Líquidos Iónicos/química , Adsorción , Tolueno/química , Compuestos Orgánicos Volátiles/química , Carbón Orgánico/química , Contaminantes Atmosféricos/química , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...