Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949555

RESUMEN

Aberrant activity of NLRP3 has been shown associations with severe diseases. Palmitoylation is a kind of protein post-translational modification, which has been shown to regulate cancer development and the innate immune system. Here, we showed that NLRP3 is palmitoylated at Cys419 and that palmitoyltransferase ZDHHC17 is the predominant enzyme that mediates NLRP3 palmitoylation and promotes NLRP3 activation by interacting with NLRP3 and facilitating NIMA-related kinase 7 (NEK7)-NLRP3 interactions. Blockade of NLRP3 palmitoylation by a palmitoylation inhibitor, 2-bromopalmitate, effectively inhibited NLRP3 activation in vitro. Also, in a dextran sulfate sodium-induced colitis model in mice, 2-bromopalmitate application could attenuate weight loss, improve the survival rate, and rescue pathological changes in the colon of mice. Overall, our study reveals that palmitoylation of NLPR3 modulates inflammasome activation and inflammatory bowel disease development. We propose that drugs targeting NLRP3 palmitoylation could be promising candidates in the treatment of NLRP3-mediated inflammatory diseases.

2.
Bioresour Technol ; 406: 130968, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876277

RESUMEN

This study evaluated the reflection of long-term anaerobic system exposed to sulfate and propionate. Fe@C was found to efficiently mitigate anaerobic sulfate inhibition and enhance propionate degradation. With influent propionate of 12000mgCOD/L and COD/SO42- ratio of 3.0, methane productivity and sulfate removal were only 0.06 ± 0.02L/gCOD and 63 %, respectively. Fe@C helped recover methane productivity to 0.23 ± 0.03L/gCOD, and remove sulfate completely. After alleviating sulfate stress, less organic substrate was utilized to form extracellular polymeric substances for self-protection, which enhanced mass transfer in anaerobic sludge. Microbial community succession, especially for alteration of key sulfate-reducing bacteria and propionate-oxidizing bacteria, was driven by Fe@C, thus enhancing sulfate reduction and propionate degradation. Acetotrophic Methanothrix and hydrogenotrophic unclassified_f_Methanoregulaceae were enriched to promote methanogenesis. Regarding propionate metabolism, inhibited methylmalonyl-CoA degradation was a limiting step under sulfate stress, and was mitigated by Fe@C. Overall, this study provides perspective on Fe@C's future application on sulfate and propionate rich wastewater treatment.


Asunto(s)
Metano , Propionatos , Sulfatos , Aguas Residuales , Propionatos/metabolismo , Sulfatos/metabolismo , Anaerobiosis , Metano/metabolismo , Reactores Biológicos/microbiología , Hierro/metabolismo , Bacterias/metabolismo , Carbono/metabolismo , Aguas del Alcantarillado/microbiología , Microbiota
3.
Sci Total Environ ; 915: 169837, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38185146

RESUMEN

This study evaluated the resilience of a long-term anaerobic treatment system exposed to sulfate, lincomycin (LCM) and their combined stress. LCM was found to impede anaerobic propionate degradation, while sulfate for restraining methanogenic acetate utilization. The combined stress, with influent LCM of 200 mg/L and sulfate of 1404 mg/L, revealed severer inhibition on anaerobic digestion than individual inhibition, leading to 73.9 % and 38.5 % decrease in methane production and sulfate removal, respectively. Suppression on propionate-oxidizing bacteria like unclassified_f__Anaerolineae and unclassified_f__Syntrophaceae further demonstrated LCM's inhibitory effect on propionate degradation. Besides, the down-regulation of genes encoding dissimilatory sulfate reduction enzymes caused by LCM triggered great inhibition on sulfate reduction. A notable increase in ARGs was detected under sulfate-stressed condition, owing to its obvious enrichment of tetracycline-resistant genes. Genera including unclassified_f__Syntrophaceae, unclassified_f__Geobacteraceae and unclassified_f__Anaerolineaceae were identified as dominant host of ARGs and enriched by sulfate addition. Overall, these results could provide the theoretical basis for further enhancement on anaerobic digestion of pharmaceutical wastewater containing sulfate and lincomycin.


Asunto(s)
Antibacterianos , Lincomicina , Anaerobiosis , Sulfatos , Propionatos/metabolismo , Farmacorresistencia Microbiana , Reactores Biológicos/microbiología
4.
Front Immunol ; 14: 1264447, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022581

RESUMEN

"Cytokine storm" is common in critically ill COVID-19 patients, however, mechanisms remain largely unknown. Here, we reported that overexpression of SARS-CoV-2 N protein in diabetic db/db mice significantly increased tubular death and the release of HMGB1, one of the damage-associated molecular patterns (DAMPs), to trigger M1 proinflammatory macrophage activation and production of IL-6, TNF-α, and MCP-1 via a Mincle-Syk/NF-κB-dependent mechanism. This was further confirmed in vitro that overexpression of SARS-CoV-2 N protein caused the release of HMGB1 from injured tubular cells under high AGE conditions, which resulted in M1 macrophage activation and production of proinflammatory cytokines via a Mincle-Syk/NF-κB-dependent mechanism. This was further evidenced by specifically silencing macrophage Mincle to block HMGB1-induced M1 macrophage activation and production of IL-6, TNF-α, and MCP-1 in vitro. Importantly, we also uncovered that treatment with quercetin largely improved SARS-CoV-2 N protein-induced AKI in db/db mice. Mechanistically, we found that quercetin treatment significantly inhibited the release of a DAMP molecule HMGB1 and inactivated M1 pro-inflammatory macrophage while promoting reparative M2 macrophage responses by suppressing Mincle-Syk/NF-κB signaling in vivo and in vitro. In conclusion, SARS-CoV-2 N protein-induced AKI in db/db mice is associated with Mincle-dependent M1 macrophage activation. Inhibition of this pathway may be a mechanism through which quercetin inhibits COVID-19-associated AKI.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Diabetes Mellitus , Proteína HMGB1 , Ratones , Animales , Humanos , FN-kappa B/metabolismo , Proteína HMGB1/metabolismo , SARS-CoV-2/metabolismo , Quercetina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Activación de Macrófagos , Interleucina-6/metabolismo , COVID-19/metabolismo , Macrófagos/metabolismo , Lesión Renal Aguda/metabolismo , Diabetes Mellitus/metabolismo
5.
J Med Virol ; 95(7): e28913, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37409639

RESUMEN

Zika virus (ZIKV) infection poses a significant threat to global public health and is associated with microcephaly. There are no approved ZIKV-specific vaccines or drugs for the clinical treatment of the infection. Currently, there are no approved ZIKV-specific vaccines or drugs for the clinical treatment of the infection. In this study, we investigated the antiviral potential of aloperine, a quinolizidine alkaloid, against ZIKV infection in vivo and in vitro. Our results demonstrate that aloperine effectively inhibits ZIKV infection in vitro, with a low nanomolar half maximal effective concentration (EC50 ). Specifically, aloperine strongly protected cells from ZIKV multiplication, as indicated by decreased expression of viral proteins and virus titer. Our further investigations using the time-of-drug-addition assay, binding, entry, and replication assays, detection of ZIKV strand-specific RNA, the cellular thermal shift assay, and molecular docking revealed that aloperine significantly inhibits the replication stage of the ZIKV life cycle by targeting the domain RNA-dependent RNA polymerase (RDRP) of ZIKV NS5 protein. Additionally, aloperine reduced viremia in mice and effectively lowered the mortality rate in infected mice. These findings highlight the potency of aloperine and its ability to target ZIKV infection, suggesting its potential as a promising antiviral drug against ZIKV.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Ratones , Infección por el Virus Zika/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Simulación del Acoplamiento Molecular , Replicación Viral
6.
Signal Transduct Target Ther ; 8(1): 194, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160897

RESUMEN

Viral infection in respiratory tract usually leads to cell death, impairing respiratory function to cause severe disease. However, the diversity of clinical manifestations of SARS-CoV-2 infection increases the complexity and difficulty of viral infection prevention, and especially the high-frequency asymptomatic infection increases the risk of virus transmission. Studying how SARS-CoV-2 affects apoptotic pathway may help to understand the pathological process of its infection. Here, we uncovered SARS-CoV-2 imployed a distinct anti-apoptotic mechanism via its N protein. We found SARS-CoV-2 virus-like particles (trVLP) suppressed cell apoptosis, but the trVLP lacking N protein didn't. Further study verified that N protein repressed cell apoptosis in cultured cells, human lung organoids and mice. Mechanistically, N protein specifically interacted with anti-apoptotic protein MCL-1, and recruited a deubiquitinating enzyme USP15 to remove the K63-linked ubiquitination of MCL-1, which stabilized this protein and promoted it to hijack Bak in mitochondria. Importantly, N protein promoted the replications of IAV, DENV and ZIKV, and exacerbated death of IAV-infected mice, all of which could be blocked by a MCL-1 specific inhibitor, S63845. Altogether, we identifed a distinct anti-apoptotic function of the N protein, through which it promoted viral replication. These may explain how SARS-CoV-2 effectively replicates in asymptomatic individuals without cuasing respiratory dysfunction, and indicate a risk of enhanced coinfection with other viruses. We anticipate that abrogating the N/MCL-1-dominated apoptosis repression is conducive to the treatments of SARS-CoV-2 infection as well as coinfections with other viruses.


Asunto(s)
COVID-19 , Coinfección , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , SARS-CoV-2 , COVID-19/genética , Replicación Viral/genética , Proteasas Ubiquitina-Específicas
8.
Viruses ; 15(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36680184

RESUMEN

Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Humanos , Masculino , Anticuerpos Antivirales/metabolismo , Flavivirus/metabolismo , Proteínas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Virus Zika/fisiología
9.
Mol Ther ; 31(2): 344-361, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36514292

RESUMEN

Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Diabetes Mellitus Experimental , Ratones , Animales , SARS-CoV-2 , COVID-19/complicaciones , Quercetina/farmacología , Diabetes Mellitus Experimental/complicaciones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Ratones Endogámicos , Puntos de Control del Ciclo Celular
10.
Virol Sin ; 38(1): 23-33, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182074

RESUMEN

Zika virus (ZIKV) evolves non-structural proteins to evade immune response and ensure efficient replication in the host cells. Cholesterol metabolic enzyme 7-dehydrocholesterol reductase (DHCR7) was recently reported to impact innate immune responses in ZIKV infection. However, the vital non-structural protein and mechanisms involved in DHCR7-mediated viral evasion are not well elucidated. In this study, we demonstrated that ZIKV infection facilitated DHCR7 expression. Notably, the upregulated DHCR7 in turn facilitated ZIKV infection and blocking DHCR7 suppressed ZIKV infection. Mechanically, ZIKV non-structural protein 4B (NS4B) interacted with DHCR7 to induce DHCR7 expression. Moreover, DHCR7 inhibited TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) phosphorylation, which resulted in the reduction of interferon-beta (IFN-ß) and interferon-stimulated genes (ISGs) productions. Therefore, we propose that ZIKV NS4B binds to DHCR7 to repress TBK1 and IRF3 activation, which in turn inhibits IFN-ß and ISGs, and thereby facilitating ZIKV evasion. This study broadens the insights on how viral non-structural proteins antagonize innate immunity to facilitate viral infection via cholesterol metabolic enzymes and intermediates.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Transducción de Señal , Proteínas no Estructurales Virales/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Inmunidad Innata , Colesterol , Replicación Viral
11.
Int J Biol Sci ; 18(12): 4704-4713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874957

RESUMEN

COVID-19 which is caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) has posed a worldwide pandemic and a major global public health threat. SARS-CoV-2 Nucleocapsid (N) protein plays a critical role in multiple steps of the viral life cycle and participates in viral replication, transcription, and assembly. The primary roles of N protein are to assemble with genomic RNA into the viral RNA-protein (vRNP) complex and to localize to the replication transcription complexes (RTCs) to enhance viral replication and transcription. N protein can also undergo liquid-liquid phase separation (LLPS) with viral genome RNA and inhibit stress granules to facilitate viral replication and assembly. Besides the function in viral life cycle, N protein can bind GSDMD to antagonize pyroptosis but promotes cell death via the Smad3-dependent G1 cell cycle arrest mechanism. In innate immune system, N protein inhibits IFN-ß production and RNAi pathway for virus survival. However, it can induce expression of proinflammatory cytokines by activating NF-κB signaling and NLRP3 inflammasome, resulting in cytokine storms. In this review article, we are focusing on the signaling mechanisms of SARS-CoV-2 N protein in viral replication, cell death and inflammation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Muerte Celular , Síndrome de Liberación de Citoquinas , Humanos , ARN Viral
12.
Sci Total Environ ; 837: 155868, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561916

RESUMEN

The effects of multiple two-phase anaerobic treatment involving acidification coupling Fe-C on sulfate-containing chemical synthesis-based pharmaceutical wastewater treatment were investigated. Fe-C was added as a filler with 25% vol. to acidogenic reactors for semi-continuous operation. The results suggested that Fe-C amendment promoted sulfate removal efficiency by 47.5% and shortened the reaction time by 50% in the acidogenic phase. With mitigation of sulfate inhibition, SCOD removal efficiency and methane production were further increased by 24.6% and 398% compared to direct raw wastewater anaerobic digestion, respectively, in methanogenic phase. The results of sulfate removal kinetics confirmed a 150% increase of removal rate in acidogenic phase. However, the apparent kinetic microbial sulfate removal constant without Fe-C amendment was maintained at approximately 0.06 h-1. The Fe-C amendment not only increased the relative abundance of Methanothrix and Desulfovibrio for sulfate reduction but also enriched unclassified_p__Chloroflexi and unclassified_c__Deltaproteobacteria for acidification. Metagenomic results indicated that Fe-C enhanced dissimilatory sulfate reduction and PAPS synthesis of assimilatory step. The hydrogen sulfide production through the 3-mercaptopyruvate to pyruvate pathways was also enhanced. Butyrate-oxidizing genes were increased synchronously to convert butyrate to acetate.


Asunto(s)
Reactores Biológicos , Preparaciones Farmacéuticas , Purificación del Agua , Anaerobiosis , Reactores Biológicos/microbiología , Butiratos/química , Preparaciones Farmacéuticas/química , Sulfatos/análisis , Aguas Residuales/microbiología , Purificación del Agua/métodos
14.
Fish Physiol Biochem ; 48(3): 571-583, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35389126

RESUMEN

In this study, the transcriptional regulation of PI3KC3 by three transcription factors (PPARγ, PPARα, and STAT3) and the potential role of PI3KC3 in mediating lipid accumulation were determined in yellow catfish Pelteobagrus fulvidraco. The 5'-deletion assay, overexpression assay, site-mutation assay, and electrophoretic mobility shift assay suggested that PPARα, PPARγ, and STAT3 negatively regulated the promoter activity of pi3kc3. Moreover, the transcriptional inactivation of pi3kc3 was directly mediated by PPARα and PPARγ under fatty acid (FA) treatment. Using primary hepatocytes from yellow catfish, FA incubation significantly increased triacylglyceride (TG) content, non-esterified fatty acid (NEFA) content, and lipid drops (LDs) content, the mRNA level of pparα, pparγ, stat3, and dnmt3b, the protein level of PPARα, PPARγ, and STAT3, and the methylation level of pi3kc3, but significantly reduced the mRNA and protein level of PI3KC3. Our findings offer new insights into the mechanisms for transcriptional regulation of PI3KC3 and for PI3KC3-mediated lipid accumulation in fish.


Asunto(s)
Bagres , Animales , Bagres/genética , Bagres/metabolismo , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , PPAR alfa/genética , PPAR gamma/genética , ARN Mensajero/metabolismo
15.
Virulence ; 13(1): 502-513, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35300578

RESUMEN

NLRP3 inflammasome mainly controls interleukin-1ß (IL-1ß) secretion, leading to cell death called pyroptosis constituting a major antiviral host defense and inflammatory diseases upon viral infection. The RAF-MEK1/2-ERK1/2 cascade and downstream c-Jun/Fos and Activator protein-1 (AP1) signaling pathway control the degree of inflammatory response. Influenza A virus (IAV) infection is known to stimulate NLRP3 inflammasome activation and inflammatory responses. Nevertheless, the detailed mechanism by which IAV induces NLRP3 inflammasome activation involved in transcription of pro-IL-1ß mRNA remains elusive. In our study, we found that IAV infection promotes pro-IL-1ß mRNA transcription and activates NLRP3 inflammasome. Detailed studies reveal that type I interferon (IFN-α/IFN-ß) as well as U0126 (a selective inhibitor of MEK-1 and MEK-2) typically inhibit IAV-mediated NLRP3 inflammasome activation via downregulating pro-IL-1ß mRNA. Moreover, knock-down of c-Jun decreases pro-IL-1ß mRNA and inhibits NLRP3 inflammasome activation upon IAV infection. Overall, the findings uncover that AP-1 signaling pathway promotes NLRP3 inflammasome activation upon IAV infection, which provides a new idea for the therapy of NLRP3 inflammasome-associated inflammatory diseases.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Inflamasomas/genética , Virus de la Influenza A/genética , Gripe Humana/genética , Interferón beta/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Mensajero , Transducción de Señal , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
16.
World J Clin Cases ; 10(1): 1-11, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35071500

RESUMEN

The appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant Omicron (B.1.1.529) has caused panic responses around the world because of its high transmission rate and number of mutations. This review summarizes the highly mutated regions, the essential infectivity, transmission, vaccine breakthrough and antibody resistance of the Omicron variant of SARS-CoV-2. The Omicron is highly transmissible and is spreading faster than any previous variant, but may cause less severe symptoms than previous variants. The Omicron is able to escape the immune system's defenses and coronavirus disease 2019 vaccines are less effective against the Omicron variant. Early careful preventive steps including vaccination will always be key for the suppression of the Omicron variant.

17.
Adv Sci (Weinh) ; 9(3): e2103248, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813685

RESUMEN

COVID-19 is infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can cause severe multiple organ injury and death. Kidney is one of major target organs of COVID-19 and acute kidney injury (AKI) is common in critically ill COVID-19 patients. However, mechanisms through which COVID-19 causes AKI remain largely unknown and treatment remains unspecific and ineffective. Here, the authors report that normal kidney-specifically overexpressing SARS-CoV-2 N develops AKI, which worsens in mice under ischemic condition. Mechanistically, it is uncovered that SARS-CoV-2 N-induced AKI is Smad3-dependent as SARS-CoV-2 N protein can interact with Smad3 and enhance TGF-ß/Smad3 signaling to cause tubular epithelial cell death and AKI via the G1 cell cycle arrest mechanism. This is further confirmed in Smad3 knockout mice and cells in which deletion of Smad3 protects against SARS-CoV-2 N protein-induced cell death and AKI in vivo and in vitro. Most significantly, it is also found that targeting Smad3 with a Smad3 pharmacological inhibitor is able to inhibit SARS-CoV-2 N-induced AKI. In conclusion, the authors identify that SARS-CoV-2 N protein is a key mediator for AKI and induces AKI via the Smad3-dependent G1 cell cycle arrest mechanism. Targeting Smad3 may represent as a novel therapy for COVID-19-asscoaited AKI.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Puntos de Control de la Fase G1 del Ciclo Celular , SARS-CoV-2 , Proteína smad3 , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/virología , Animales , COVID-19/genética , COVID-19/metabolismo , Línea Celular , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo
18.
Viruses ; 13(10)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34696459

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus, and its infection may cause severe neurodegenerative diseases. The outbreak of ZIKV in 2015 in South America has caused severe human congenital and neurologic disorders. Thus, it is vitally important to determine the inner mechanism of ZIKV infection. Here, our data suggested that the ubiquitin-specific peptidase 38 (USP38) played an important role in host resistance to ZIKV infection, during which ZIKV infection did not affect USP38 expression. Mechanistically, USP38 bound to the ZIKV envelope (E) protein through its C-terminal domain and attenuated its K48-linked and K63-linked polyubiquitination, thereby repressed the infection of ZIKV. In addition, we found that the deubiquitinase activity of USP38 was essential to inhibit ZIKV infection, and the mutant that lacked the deubiquitinase activity of USP38 lost the ability to inhibit infection. In conclusion, we found a novel host protein USP38 against ZIKV infection, and this may represent a potential therapeutic target for the treatment and prevention of ZIKV infection.


Asunto(s)
Proteasas Ubiquitina-Específicas/farmacología , Ubiquitinación , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Células A549 , Células HeLa , Humanos , Receptor EphB2 , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas del Envoltorio Viral/efectos de los fármacos , Infección por el Virus Zika/virología
20.
Nat Commun ; 12(1): 4664, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341353

RESUMEN

Excessive inflammatory responses induced upon SARS-CoV-2 infection are associated with severe symptoms of COVID-19. Inflammasomes activated in response to SARS-CoV-2 infection are also associated with COVID-19 severity. Here, we show a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. N protein facilitates maturation of proinflammatory cytokines and induces proinflammatory responses in cultured cells and mice. Mechanistically, N protein interacts directly with NLRP3 protein, promotes the binding of NLRP3 with ASC, and facilitates NLRP3 inflammasome assembly. More importantly, N protein aggravates lung injury, accelerates death in sepsis and acute inflammation mouse models, and promotes IL-1ß and IL-6 activation in mice. Notably, N-induced lung injury and cytokine production are blocked by MCC950 (a specific inhibitor of NLRP3) and Ac-YVAD-cmk (an inhibitor of caspase-1). Therefore, this study reveals a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.


Asunto(s)
COVID-19/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , SARS-CoV-2/metabolismo , Animales , COVID-19/virología , Células Cultivadas , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamasomas/genética , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fosfoproteínas/metabolismo , Unión Proteica , SARS-CoV-2/fisiología , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...