Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410179, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953224

RESUMEN

Photocatalytic synthesis of H2O2 is an advantageous and ecologically sustainable alternative to the conventional anthraquinone process. However, achieving high conversion efficiency without sacrificial agents remains a challenge. In this study, two covalent organic frameworks (COF-O and COF-C) were prepared with identical skeletal structures but with their pore walls anchored to different alkyl chains. They were used to investigate the effect of the chemical microenvironment of pores on photocatalytic H2O2 production. Experimental results reveal a change of hydrophilicity in COF-O, leading to suppressed charge recombination, diminished charge transfer resistance, and accelerated interfacial electron transfer. An apparent quantum yield as high as 10.3% (λ = 420 nm) can be achieved with H2O and O2 through oxygen reduction reaction. This is among the highest ever reported for polymer photocatalysts. This study may provide a novel avenue for optimizing photocatalytic activity and selectivity in H2O2 generation.

2.
Nat Commun ; 15(1): 5760, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982046

RESUMEN

Artificial wrinkles, especially those with responsive erasure/regeneration behaviors have gained extensive interest due to their potential in smart applications. However, current wrinkle modulation methods primarily rely on network rearrangement, causing bottlenecks in in situ wrinkle regeneration. Herein, we report a dually cross-linked network wherein [2]rotaxane cross-link can dissipate stress within the wrinkles through its sliding motion without disrupting the network, and quadruple H-bonding cross-link comparatively highlight the advantages of [2]rotaxane modulation. Acid stimulation dissociates quadruple H-bonding and destructs network, swiftly eliminating the wrinkles. However, the regeneration process necessitates network rearrangement, making in situ recovery unfeasible. By contrast, alkaline stimulation disrupts host-guest recognition, and subsequent intramolecular motion of [2]rotaxane dissipate energy to eliminate wrinkles gradually. The always intact network allows for the in situ recovery of surface microstructures. The responsive behaviors of quadruple H-bonding and mechanical bond are orthogonal, and their combination leads to wrinkles with multiple but accurate responsiveness.

3.
Plant Physiol Biochem ; 214: 108917, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38976941

RESUMEN

Sweet potato [Ipomoea batatas (L.) Lam], the crop with the seventh highest annual production globally, is susceptible to various adverse environmental influences, and the study of stress-resistant genes is important for improving its tolerance to abiotic stress. The enzyme trehalose-6-phosphate synthase (TPS) is indispensable in the one pathway for synthesizing trehalose in plants. TPS is known to participate in stress response in plants, but information on TPS in sweet potato is limited. This study produced the N-terminal truncated IbTPS1 gene (△NIbTPS1) overexpression lines of Arabidopsis thaliana and sweet potato. Following salt and mannitol-induced drought treatment, the germination rate, root elongation, and fresh weight of the transgenic A. thaliana were significantly higher than that in the wild type. Overexpression of △NIbTPS1 elevated the photosynthetic efficiency (Fv/Fm) and the activity of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase in sweet potato during drought and salt treatments, while reducing malondialdehyde and O2∙- contents, although expression of the trehalose-6-phosphate phosphatase gene IbTPP and trehalose concentrations were not affected. Thus, overexpressing the △NIbTPS1 gene can improve the stress tolerance of sweet potato to drought and salt by enhancing the photosynthetic efficiency and antioxidative enzyme system. These results will contribute to understand the functions of the △NIbTPS1 gene and trehalose in the response mechanism of higher plants to abiotic stress.

4.
Cell Biol Int ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886911

RESUMEN

Lung cancer is one of the most prevalent human cancers with a high lethality rate worldwide. In this study, we demonstrated that GSE1 (genetic suppressor element 1) expression is aberrantly upregulated in lung adenocarcinoma and that GSE1 depletion inhibits the proliferation and migration of both A549 and H1299 cells. Immunoprecipitation assays demonstrated that GSE1 interacts with histone deacetylase 1 (HDAC1) and other BRAF-HDAC complex (BHC) components in cells. The transcriptome of GSE1-knockdown A549 cells indicated that 207 genes were upregulated and 159 were downregulated based on a p-value < .05 and fold change ≥ 1.5. Bioinformatics analysis suggested that 140 differentially expressed genes harbor binding sites for HDAC1, including the tumor suppressor gene KLF6 (Kruppel-like factor 6). Indeed, quantitative reverse-transcription polymerase chain reaction and western blot analysis revealed that GSE1 could inhibit the transcription of KLF6 in lung cancer cells. In conclusion, GSE1 cooperates with HDAC1 to promote the proliferation and metastasis of non-small cell lung cancer cells through the downregulation of KLF6 expression.

5.
Nanotechnology ; 35(36)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38861952

RESUMEN

The development of bifunctional catalysts with subtle structures, high efficiencies, and good durabilities for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is crucial for overall water splitting. In this work, a multicomponent S-doped NiFe2O4/Ni-Fe micro nano flower electrocatalyst was synthesized rapidly on foam copper using a simple one-step constant current electrodeposition method. The introduction of S leads to the transformation of the microsphere structure of the Ni-Fe alloy into a cauliflower-like morphology and induces changes in the surface electronic structure, significantly enhancing the catalytic performance for the HER and OER. The S-NiFe2O4/Ni-Fe alloy/CF showed low overpotentials of 220 and 66 mV at 10 mA cm-2in 1.0 M KOH for the OER and HER, respectively. High durability OER and HER performances were demonstrated through 60 h of chronopotentiometry and 6000 CV cycles test. Excellent overall water splitting electrocatalytic activity was observed in the S-NiFe2O4/Ni-Fe alloy/CF‖S-NiFe2O4/Ni-Fe alloy/CF two-electrode system. In particular, active-phase NiOOH, a highly active substance for OER, can be controllably formed in the reaction process owing to the nanoflower structure of multi-layer sulfur which slows down the dissolution of NiFe2O4/Ni-Fe alloy. These results suggest that this composite structure is a promising bifunctional electrocatalyst.

6.
Food Chem ; 455: 139779, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833859

RESUMEN

This study investigated the production of antioxidant peptides from Porphyra yezoensis through fermentation with three strains of microorganisms: Lactiplantibacillus plantarum L13, Bacillus amyloliquefaciens MMB-02, and Saccharomyces cerevisiae A8. The crude peptides were extracted by aqueous acid precipitation and purified by Sephadex G-25 gel column to produce highly active antioxidant components with molecular weight of <4000 Da. The LC-MS/MS result revealed that the fermentation group contained more hydrophobic amino acids and oligopeptides, which were mainly originated from phycobiliproteins and algal blue proteins. Finally, the antioxidant activity of Porphyra yezoensis was determined with DPPH· and ABTS· scavenging rates of 54.87% and 57.39%, respectively. The ferric ion-reducing power (FRAP) and enzyme activities of SOD and CAT were significantly higher than those of the control group. This study provides a scientific foundation for the deep processing of striped seaweed and contributes to the theoretical understanding of synthetic antioxidant substitutes.


Asunto(s)
Antioxidantes , Fermentación , Péptidos , Porphyra , Porphyra/química , Porphyra/metabolismo , Porphyra/microbiología , Antioxidantes/química , Antioxidantes/metabolismo , Péptidos/química , Péptidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Espectrometría de Masas en Tándem , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Algas Comestibles
7.
BMC Musculoskelet Disord ; 25(1): 360, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714980

RESUMEN

OBJECTIVE: Increasing research suggests that paraspinal muscle fat infiltration may be a potential biological marker for the assessment of osteoporosis. Our aim was to investigate the relationship between lumbar paraspinal muscle properties on MRI and volumetric bone mineral density (vBMD) based on QCT in patients with lumbar disc herniation (LDH). METHODS: A total of 383 patients (aged 24-76 years, 193 females) with clinically and radiologically diagnosed LDH were enrolled in this retrospective study. The muscle cross-sectional area (CSA) and the proton density fat fraction (PDFF) were measured for the multifidus (MF), erector spinae (ES) and psoas major (PS) at the central level of L3/4, L4/5 and L5/S1 on lumbar MRI. QCT was used to measure the vBMD of two vertebral bodies at L1 and L2 levels. Patients were divided into three groups based on their vBMD values: normal bone density group (> 120 mg/cm3), osteopenia group (80 to 120 mg/cm3) and osteoporosis group (< 80 mg/cm3). The differences in paraspinal muscle properties among three vBMD groups were tested by one-way ANOVA with post hoc analysis. The relationships between paraspinal muscle properties and vBMD were analyzed using Pearson correlation coefficients. Furthermore, the association between vBMD and paraspinal muscle properties was further evaluated using multiple linear regression analysis, with age and sex also included as predictors. RESULTS: Among the 383 LDH patients, 191 had normal bone density, 129 had osteopenia and 63 had osteoporosis. In LDH patients, compared to normal and osteopenia group, paraspinal muscle PDFF was significantly greater in osteoporosis group, while paraspinal muscle CSA was lower (p < 0.001). After adjusting for age and sex, it was found that MF PDFF and PS CSA were found to be independent factors influencing vBMD (p < 0.05). CONCLUSION: In patients with LDH, paraspinal muscle properties measured by IDEAL-IQ sequence and lumbar MR scan were found to be related to vBMD. There was a correlation between the degree of paraspinal muscle PDFF and decreasing vBMD, as well as a decrease paraspinal muscle CSA with decreasing vBMD. These findings suggest that clinical management should consider offering tailored treatment options for patients with LDH based on these associations.


Asunto(s)
Densidad Ósea , Desplazamiento del Disco Intervertebral , Vértebras Lumbares , Imagen por Resonancia Magnética , Osteoporosis , Músculos Paraespinales , Humanos , Persona de Mediana Edad , Femenino , Masculino , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/patología , Músculos Paraespinales/fisiopatología , Adulto , Densidad Ósea/fisiología , Vértebras Lumbares/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/fisiopatología , Estudios Retrospectivos , Anciano , Osteoporosis/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Adulto Joven , Enfermedades Óseas Metabólicas/diagnóstico por imagen , Enfermedades Óseas Metabólicas/etiología
8.
Angew Chem Int Ed Engl ; 63(28): e202404481, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38699952

RESUMEN

The pursuit of fabricating high-performance graphene films has aroused considerable attention due to their potential for practical applications. However, developing both stretchable and tough graphene films remains a formidable challenge. To address this issue, we herein introduce mechanical bond to comprehensively improve the mechanical properties of graphene films, utilizing [2]rotaxane as the bridging unit. Under external force, the [2]rotaxane cross-link undergoes intramolecular motion, releasing hidden chain and increasing the interlayer slip distance between graphene nanosheets. Compared with graphene films without [2]rotaxane cross-linking, the presence of mechanical bond not only boosted the strength of graphene films (247.3 vs 74.8 MPa) but also markedly promoted the tensile strain (23.6 vs 10.2 %) and toughness (23.9 vs 4.0 MJ/m3). Notably, the achieved tensile strain sets a record high and the toughness surpasses most reported results, rendering the graphene films suitable for applications as flexible electrodes. Even when the films were stretched within a 20 % strain and repeatedly bent vertically, the light-emitting diodes maintained an on-state with little changes in brightness. Additionally, the film electrodes effectively actuated mechanical joints, enabling uninterrupted grasping movements. Therefore, the study holds promise for expanding the application of graphene films and simultaneously inspiring the development of other high-performance two-dimensional films.

9.
J Plant Res ; 137(4): 669-683, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758249

RESUMEN

Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.


Asunto(s)
Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Glutamato-Cisteína Ligasa , Ipomoea batatas , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/fisiología , Ipomoea batatas/genética , Ipomoea batatas/fisiología , Ipomoea batatas/enzimología , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Estrés Salino/genética , Ácido Abscísico/metabolismo , Malondialdehído/metabolismo , Glutatión/metabolismo , Antioxidantes/metabolismo , Germinación/efectos de los fármacos
10.
World J Gastrointest Oncol ; 16(5): 2006-2017, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764815

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) modification represents the predominant alteration found in eukaryotic messenger RNA and plays a crucial role in the progression of various tumors. However, despite its significance, the comprehensive investigation of METTL5, a key m6A methyltransferase, in colorectal cancer (CRC) remains limited. AIM: To investigate the role of METTL5 in CRC. METHODS: We assessed METTL5 expression levels in clinical samples obtained from CRC patients as well as in CRC cell lines. To elucidate the downstream targets of METTL5, we performed RNA-sequencing analysis coupled with correlation analysis, leading us to identify Toll-like receptor 8 (TLR8) as a potential downstream target. In vitro functional assessments of METTL5 and TLR8 were conducted using CCK-8 assays, scratch assays, as well as assays measuring cell migration and invasion. RESULTS: Our findings reveal a pronounced upregulation of METTL5 expression in both CRC cells and tissues, which correlated significantly with an unfavorable prognosis. In vitro experiments unequivocally demonstrated the oncogenic role of METTL5, as evidenced by its promotion of CRC cell proliferation, invasion, and migration. Notably, we identified TLR8 as a downstream target of METTL5, and subsequent down-regulation of TLR8 led to a significant inhibition of CRC cell proliferation, invasion, and tumor growth. CONCLUSION: The heightened expression of METTL5 in CRC is strongly associated with clinicopathological features and a poor prognosis, thereby underscoring its potential utility as a critical marker for facilitating early diagnosis and prognostication in CRC.

12.
Viruses ; 16(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675926

RESUMEN

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Asunto(s)
Virus de la Enfermedad de Newcastle , Proteínas Virales , Replicación Viral , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/metabolismo , Animales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/metabolismo , Línea Celular , Regulación Viral de la Expresión Génica , ARN Viral/genética , ARN Viral/metabolismo , Pollos , Virulencia , Unión Proteica , Mutación
13.
Small ; : e2310340, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456789

RESUMEN

Chondrosarcoma(CS), a prevalent primary malignant bone tumor, frequently exhibits chemotherapy resistance attributed to upregulated anti-apoptosis pathways such as the Bcl-2 family. In this manuscript, a new strategy is presented to augment chemosensitivity and mitigate systemic toxicity by harnessing a nano-enabled drug delivery hydrogel platform. The platform utilizes "PLGA-PEG-PLGA", an amphiphilic triblock copolymer combining hydrophilic polyethylene glycol (PEG) and hydrophobic polylactide glycolide (PLGA) blocks, renowned for its properties conducive to crafting a biodegradable, temperature-sensitive hydrogel. This platform is tailored to encapsulate a ratiometrically designed dual-loaded liposomes containing a first-line chemo option for CS, Doxorubicin (Dox), plus a calculated amount of small molecule inhibitor for anti-apoptotic Bcl-2 pathway, ABT-737. In vitro and in vivo evaluations demonstrate successful Bcl-2 suppression, resulting in the restoration of Dox sensitivity, evident through impeded tumor growth and amplified necrosis rates at the tumor site. This delivery system showcases remarkable thermal responsiveness, injectability, and biodegradability, all finely aligned with the clinical demands of CS treatment. Collectively, this study introduces a transformative avenue for tackling drug resistance in CS chemotherapy, offering significant clinical potential.

14.
Org Lett ; 26(12): 2387-2392, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38488192

RESUMEN

[2.2]Paracyclophane-fused heterocycles represent an important scaffold. Traditional approaches often suffer from tedious synthetic routes, and the development of catalytic synthesis of them remains in its infancy. Herein, by employing highly strained aryne intermediates as partners, we have developed a concise protocol by palladium-catalyzed C-H activation/annulation from [2.2]paracyclophanecarboxamide substrates. [2.2]Paracyclophane-fused quinolinone products are obtained in good yields (up to 84%). Furthermore, the utility of the process has been shown through the synthesis of [2.2]paracyclophane-fused heterocyclic catalysts.

15.
Org Lett ; 26(9): 1792-1796, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38415597

RESUMEN

A mild and effective strategy for the asymmetric synthesis of C2-quaternary indolin-3-ones from 2-alkynyl arylazides and ketones by gold/chiral amine relay catalysis is described. In this reaction, 2-alkynyl arylazides undergo gold-catalyzed cyclization, nucleophilic attack, and oxidation to form intermediate 2-phenyl-3H-indol-3-ones, followed by an l-proline-catalyzed asymmetric Mannich reaction with ketones, to afford corresponding products in satisfactory yields with excellent enantio- and diastereoselectivities.

16.
Small ; 20(26): e2310387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38312084

RESUMEN

Rational design of heterostructure catalysts through phase engineering strategy plays a critical role in heightening the electrocatalytic performance of catalysts. Herein, a novel amorphous/crystalline (a/c) heterostructure (a-CoS/Ni3S2) is manufactured by a facile hydrothermal sulfurization method. Strikingly, the interface coupling between amorphous phase (a-CoS) and crystalline phase (Ni3S2) in a-CoS/Ni3S2 is much stronger than that between crystalline phase (c-CoS) and crystalline phase (Ni3S2) in crystalline/crystalline (c/c) heterostructure (c-CoS/Ni3S2) as control sample, which makes the meta-stable amorphous structure more stable. Meanwhile, a-CoS/Ni3S2 has more S vacancies (Sv) than c-CoS/Ni3S2 because of the presence of an amorphous phase. Eventually, for the oxygen evolution reaction (OER), the a-CoS/Ni3S2 exhibits a significantly lower overpotential of 192 mV at 10 mA cm-2 compared to the c-CoS/Ni3S2 (242 mV). An exceptionally low cell voltage of 1.51 V is required to achieve a current density of 50 mA cm-2 for overall water splitting in the assembled cell (a-CoS/Ni3S2 || Pt/C). Theoretical calculations reveal that more charges transfer from a-CoS to Ni3S2 in a-CoS/Ni3S2 than in c-CoS/Ni3S2, which promotes the enhancement of OER activity. This work will bring into play a fabrication strategy of a/c catalysts and the understanding of the catalytic mechanism of a/c heterostructures.

17.
J Exp Clin Cancer Res ; 43(1): 44, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326863

RESUMEN

BACKGROUND: m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS: The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS: We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION: This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.


Asunto(s)
Adenina , Neoplasias Colorrectales , ARN Largo no Codificante , Animales , Humanos , Adenina/análogos & derivados , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Epigénesis Genética , Histona Demetilasas/genética , Metiltransferasas/metabolismo , Antígenos de Histocompatibilidad Menor , ARN , ARN Largo no Codificante/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
18.
J Integr Plant Biol ; 66(2): 176-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38294064

RESUMEN

Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.


Asunto(s)
Ciclopentanos , Ipomoea batatas , Oxilipinas , Cloruro de Sodio , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Resistencia a la Sequía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Polymers (Basel) ; 16(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256985

RESUMEN

The utilization of titanium dioxide (TiO2) as a photocatalyst for the treatment of wastewater has attracted significant attention in the environmental field. Herein, we prepared an NH2-MIL-125-derived N-doped TiO2@C Visible Light Catalyst through an in situ calcination method. The nitrogen element in the organic connector was released through calcination, simultaneously doping into the sample, thereby enhancing its spectral response to cover the visible region. The as-prepared N-doped TiO2@C catalyst exhibited a preserved cage structure even after calcination, thereby alleviating the optical shielding effect and further augmenting its photocatalytic performance by increasing the reaction sites between the catalyst and pollutants. The calcination time of the N-doped TiO2@C-450 °C catalyst was optimized to achieve a balance between the TiO2 content and nitrogen doping level, ensuring efficient degradation rates for basic fuchsin (99.7%), Rhodamine B (89.9%) and tetracycline hydrochloride (93%) within 90 min. Thus, this study presents a feasible strategy for the efficient degradation of pollutants under visible light.

20.
J Am Chem Soc ; 146(3): 2257-2266, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38195401

RESUMEN

Metallic Al has been deemed an ideal electrode material for aqueous batteries by virtue of its abundance and high theoretical capacity (8056 mAh cm-3). However, the development of aqueous Al metal batteries has been hindered by several side reactions, including water decomposition, Al corrosion, and passivation, which arise from the solvation reaction of Al and H2O in conventional aqueous electrolytes. In this work, we report that water activity in electrolyte can be suppressed by optimizing the Al3+ solvation structure through intercalation of polar pyridine-3-carboxylic acid in an aluminum trifluoromethanesulfonate aqueous environment. Furthermore, the pyridine-3-carboxylic acid molecules are inclined to alter the surface energy of Al, thus suppressing the random deposition of Al. As a result, the Al corrosion in the hybrid electrolyte is restrained, and the long-term electrochemical stability of the electrolyte is tremendously improved. These merits bring remarkable reversibility to aqueous Al batteries using Al-preintercalated MnO2 cathodes, delivering a retaining energy density of >250 Wh kg-1 at 0.2 A g-1 after 600 cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...