Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2756, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589713

RESUMEN

Multiple pluripotent states have been described in mouse and human stem cells. Here, we apply single-cell RNA-seq to a newly established BMP4 induced mouse primed to naïve transition (BiPNT) system and show that the reset is not a direct reversal of cell fate but goes through a primordial germ cell-like cells (PGCLCs) state. We first show that epiblast stem cells bifurcate into c-Kit+ naïve and c-Kit- trophoblast-like cells, among which, the naïve branch undergoes further transition through a PGCLCs intermediate capable of spermatogenesis in vivo. Mechanistically, we show that DOT1L inhibition permits the transition from primed pluripotency to PGCLCs in part by facilitating the loss of H3K79me2 from Gata3/6. In addition, Prdm1/Blimp1 is required for PGCLCs and naïve cells, while Gata2 inhibits PGC-like state by promoting trophoblast-like fate. Our work not only reveals an alternative route for primed to naïve transition, but also gains insight into germ cell development.


Asunto(s)
Células Germinativas , Estratos Germinativos , Animales , Proteína Morfogenética Ósea 4 , Diferenciación Celular , Masculino , Ratones , Células Madre , Trofoblastos
3.
JCI Insight ; 6(9)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33986196

RESUMEN

Trained immunity, induced by ß-glucan in monocytes, is mediated by activating metabolic pathways that result in epigenetic rewiring of cellular functional programs; however, molecular mechanisms underlying these changes remain unclear. Here, we report a key immunometabolic and epigenetic pathway mediated by the miR-9-5p-isocitrate dehydrogenase 3α (IDH3α) axis in trained immunity. We found that ß-glucan-trained miR-9-5p-/- monocytes showed decreased IL-1ß, IL-6, and TNF-α production after LPS stimulation. Trained miR-9-5p-/- mice produced decreased levels of proinflammatory cytokines upon rechallenge in vivo and had worse protection against Candida albicans infection. miR-9-5p targeted IDH3α and reduced α-ketoglutarate (α-KG) levels to stabilize HIF-1α, which promoted glycolysis. Accumulating succinate and fumarate via miR-9-5p action integrated immunometabolic circuits to induce histone modifications by inhibiting KDM5 demethylases. ß-Glucan-trained monocytes exhibited low IDH3α levels, and IDH3α overexpression blocked the induction of trained immunity by monocytes. Monocytes with IDH3α variants from autosomal recessive retinitis pigmentosa patients showed a trained immunity phenotype at immunometabolic and epigenetic levels. These findings suggest that miR-9-5p and IDH3α act as critical metabolic and epigenetic switches in trained immunity.


Asunto(s)
Epigénesis Genética/genética , Inmunidad Innata/genética , Memoria Inmunológica/genética , Isocitrato Deshidrogenasa/metabolismo , Redes y Vías Metabólicas/genética , MicroARNs/genética , Monocitos/metabolismo , Animales , Candida albicans , Candidiasis/genética , Candidiasis/inmunología , Epigénesis Genética/inmunología , Fumaratos/metabolismo , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunidad Innata/inmunología , Memoria Inmunológica/inmunología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ácidos Cetoglutáricos/metabolismo , Lipopolisacáridos/farmacología , Redes y Vías Metabólicas/inmunología , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Monocitos/efectos de los fármacos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Ácido Succínico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , beta-Glucanos/inmunología
4.
Chin Med J (Engl) ; 120(2): 155-8, 2007 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-17335662

RESUMEN

BACKGROUND: The fat derived protein adiponectin plays an important role in the regulation of glucose metabolism. The aim of this study was to provide the experimental basis for further investigating on adiponectin (ADPN) function. Its eukaryotic recombinant was constructed and expressed in precursor cells of 3T3-L1 adipocytes. The effects of dexamethasone on peroxisome proliferator activated receptor-gamma (PPAR-gamma) mRNA expression in 3T3-L1 cells with human recombinant adiponectin were assessed. METHODS: The recombinant plasmid pMD18-T-hADPN and eukaryotic expression vector pcDNA3.1(+) were digested by two restrictive endonucleases and adiponectin and linear pcDNA3.1(+) were obtained. Then, they were ligated and translated into JM109. The recombinant pcDNA3.1(+)-hADPN so obtained was identified by digestion by restrictive endonuclease and nucleotide sequencing. The 3T3-L1 precursor cells were transfected using SuperFect Transfection Reagent (Qiagen). Furthermore, 3T3-L1 cells with human recombinant adiponectin incubated with dexamethasone (0.5 mmol/L) for 24 hours, cells were collected and total RNA was extracted. The PPAR-gamma mRNA expression was quantified by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: After eukaryotic recombinant was digested by Hind III and EcoR I, fragments of 800 bp and 5.4 kb were identified by nucleotide sequence scanning and consistent with theoretical values. Electrophoretogram of RT-PCR in 3T3-L1 precursors showed only one band in front of 250 bp, which was consistent with theoretical value 234 bp. In the 3T3-L1 cells, 3T3-L1 cells with plasmid and 3T3-L1 cells human recombinant adiponectin, treatment with dexamethasone (0.5 mmol/L) decreased PPAR-gamma mRNA expression compared to untreated controls (P < 0.01). Effect of dexamethasone on PPAR-gamma mRNA expression in 3T3-L1 cells was reversed by stably transfected human recombinant adiponectin. CONCLUSION: The 3T3-L1 cells stably transfected human recombinant adiponectin had increased PPAR-gamma mRNA expression. Dexamethasone suppressed PPAR-gamma mRNA expression in the 3T3-L1 cells. Effect of dexamethasone on PPAR-gamma mRNA expression in 3T3-L1 cells was reversed by stably transfected human recombinant adiponectin.


Asunto(s)
Adiponectina/fisiología , Dexametasona/farmacología , PPAR gamma/genética , ARN Mensajero/análisis , Células 3T3-L1 , Animales , Resistencia a la Insulina , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA