Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 280: 116527, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38833978

RESUMEN

Aflatoxin B1 (AFB1) is known to inhibit growth, and inflict hepatic damage by interfering with protein synthesis. Allicin, has been acknowledged as an efficacious antioxidant capable of shielding the liver from oxidative harm. This study aimed to examine the damage caused by AFB1 on bovine hepatic cells and the protective role of allicin against AFB1-induced cytotoxicity. In this study, cells were pretreated with allicin before the addition of AFB1 for co-cultivation. Our findings indicate that AFB1 compromises cellular integrity, suppresses the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, allicin attenuates oxidative damage to bovine hepatic cells caused by AFB1 by promoting the expression of the Nrf2 pathway and reducing cell apoptosis. In conclusion, the results of this study will help advance clinical research and applications, providing new options and directions for the prevention and treatment of liver diseases.

2.
Reprod Biol ; 24(3): 100898, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889545

RESUMEN

In dairy cows, the occurrence of subclinical ketosis (SCK) is particularly high during early lactation. Previously, we documented alterations in the abundance of adiponectin (ADPN) in anestrus cows with SCK in comparison to cows in estrus. In the present study, 60 cows were divided into two groups: control (C, n = 30) and SCK (n = 30). Based on cow's estrus situation in two group at 55-60 days postpartum, 15 anestrus SCK cows and estrus cows were designated the SCK-A group and C-E group, respectively. The SCK-A group had downregulated serum and follicular fluid ADPN levels compared with the C-E group. The serum ADPN level was positively correlated with the insulin level and follicle growth rate, and there was a positive correlation between ADPN and glucose in the follicular fluid. Primary culture of dairy cow granulosa cells (GCs) was established to observe the effect of low glucose (Glu) and/or ADPN on GCs cyclins and proteins important for steroid synthesis. The results showed that the addition of 1 µg/mL ADPN alleviated the negative effects of low Glu treatment on the proliferation of GCs and the expression of steroid secretion related protein proteins. Treatment with LY294002 (PI3K inhibitor) four experimental GCs groups: control (0 µg/mL ADPN), 1 µg/mL ADPN, LY294002 inhibitor, and 1 µg/mL ADPN+LY294002. The results showed that ADPN promotes the secretion of steroid hormones by GCs through the PI3K-AKT. In summary, ADPN plays a crucial role in ameliorating postpartum anestrus in dairy cows with SCK.

3.
Ecotoxicol Environ Saf ; 280: 116574, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38875822

RESUMEN

Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38607990

RESUMEN

Excessive inflammatory response and oxidative stress (OS) play an important role in the pathogenesis of spinal cord injury (SCI). Balance of inflammation and prevention of OS have been considered an effective strategy for the treatment of SCI. Hyaluronan and proteoglycan link protein 1 (HAPLN1), also known as cartilage link protein, has displayed a wide range of biological and physiological functions in different types of tissues and cells. However, whether HAPLN1 regulates inflammation and OS during SCI is unknown. Therefore, we aimed to examine whether HAPLN1 can have a protective effect on SCI. In this study, both in vitro and in vivo SCI models were established. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays were used. Western blotting and enzyme-linked immunosorbent assay were employed to assess the expression of proteins. Our results demonstrate that the administration of HAPLN1 promoted the recovery of motor neurons after SCI by increasing the Basso mouse scale score, increasing the numbers of motor neurons, and preventing apoptosis of spinal cord cells. Additionally, HAPLN1 mitigated OS in spinal cord tissue after SCI by increasing the content of superoxide dismutase SOD and the activity of glutathione peroxidase but reducing the levels of malondialdehyde. Importantly, we found that HAPLN1 stimulated the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and stimulated the expression of heme oxygenase-1 and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, which mediated the attenuation of HAPLN1 in activation of the NOD-like receptor protein 3 (NLRP3) inflammasome by reducing the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1ß. Correspondingly, in vitro experiments show that the presence of HAPLN1 suppressed the NLRP3 inflammasome and prevented cell injury against H2O2 in PC12 cells. These effects were mediated by the Nrf2/ARE pathway, and inhibition of Nrf2 with ML385 abolished the beneficial effects of HAPLN1. Based on these findings, we conclude that HAPLN1 inhibits the NLRP3 inflammasome through the stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, enhancing motor neuronal survival, and improving the recovery of nerve function after SCI.

5.
J Agric Food Chem ; 72(11): 5955-5965, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451160

RESUMEN

The worldwide prevalence of Aflatoxin B1 (AFB1), which contaminates feedstock and food, is on the rise. AFB1 inhibits testosterone (T) biosynthesis, but the mechanism is not yet clear. By establishing in vivo and in vitro models, this study found the number of Leydig cells (LCs), T content, and the expression of T biosynthesis key enzymes were suppressed after AFB1 treatment. AFB1 exposure also increased reactive oxygen species (ROS) and promoted mitochondrial injury and mitochondrial pathway apoptosis. Moreover, the AMPK signaling pathway was activated, and using an AMPK inhibitor relieved apoptosis and the suppressed T biosynthesis key enzymes of LCs caused by AFB1 through regulating downstream p53 and Nur77. Additionally, adding ROS intervention could inhibit AMPK activation and alleviate the decreased T content caused by AFB1. In summary, AFB1 promotes the apoptosis of LCs and inhibits T biosynthesis key enzyme expression via activating the ROS/AMPK signaling pathway, which eventually leads to T synthesis disorder.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aflatoxina B1 , Ratones , Masculino , Animales , Especies Reactivas de Oxígeno/metabolismo , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal , Testosterona , Apoptosis , Estrés Oxidativo
6.
J Agric Food Chem ; 72(11): 5926-5934, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457471

RESUMEN

Glycinin (11S) and ß-conglycinin (7S) from soybean (glycine max) cause diarrhea and intestinal barrier damage in young animals. Understanding the mechanisms underlying the damage caused by 7S and 11S, it is vital to develop strategies to eliminate allergenicity. Consequently, we investigated 7S/11S-mediated apoptosis in porcine intestinal epithelial (IPEC-J2) cells. IPEC-J2 cells suffered endoplasmic reticulum stress (ERS) in response to 7S and 11S, activating protein kinase RNA-like ER kinase, activating transcription factor 6, C/EBP homologous protein, and inositol-requiring enzyme 1 alpha. 4-Phenylbutyric acid (4-PBA) treatment alleviated ERS; reduced the NLR family pyrin domain containing 3, interleukin-1ß, and interleukin-18 levels; inhibited apoptosis; increased mitofusin 2 expression; and mitigated Ca2+ overload and mitochondria-associated ER membrane (MAM) dysfunction, thereby ameliorating IPEC-J2 injury. We demonstrated the pivotal role of ERS in MAM dysfunction and 7S- and 11S-mediated apoptosis, providing insights into 7S- and 11S-mediated intestinal barrier injury prevention and treatment.


Asunto(s)
Antígenos de Plantas , Apoptosis , Globulinas , Glycine max , Fenilbutiratos , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Animales , Porcinos , Retículo Endoplásmico , Mitocondrias , Estrés del Retículo Endoplásmico
7.
Res Vet Sci ; 169: 105177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350170

RESUMEN

Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.


Asunto(s)
Enfermedades de los Bovinos , Exosomas , Cetosis , Trastornos del Metabolismo de los Lípidos , Femenino , Animales , Bovinos , Metabolismo de los Lípidos/fisiología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Ácidos Grasos no Esterificados , Exosomas/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/veterinaria , Proteínas Quinasas Activadas por AMP/genética , Cetosis/veterinaria , Enfermedades de los Bovinos/metabolismo
8.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38396863

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by hepatic fat accumulation by metabolic dysfunction. The rising prevalence of MAFLD, especially among Asians, may be associated with changes in gut microbiota. We investigated gut microbiota characteristics and potential mechanisms leading to MAFLD development according to enterotypes. Case-control studies examining the gut microbiota composition between MAFLD and non-MAFLD participants were searched in public databases until July 2023. Gut microbiota was categorized into two enterotypes by principal component analysis. According to the enterotypes, LEfSe, ALDEx2, XGBoost, and DCiPatho were utilized to identify differential abundances and pathogenic microbes in the gut between the MAFLD and non-MAFLD groups. We analyzed microbial community networks with the SprCC module and predicted microbial functions. In the Prevotella enterotype (ET-P), 98.6% of Asians and 65.1% of Caucasians were associated with MAFLD (p = 0.049). MAFLD incidence was correlated with enterotype, age, obesity, and ethnicity (p < 0.05). Asian MAFLD patients exhibited decreased Firmicutes and Akkermansia muciniphila and increased Bacteroidetes and P. copri. The pathogenicity scores were 0.006 for A. muciniphila and 0.868 for P. copri. The Asian MAFLD group showed decreased stability and complexity in the gut microbiota network. Metagenome function analysis revealed higher fructose metabolism and lipopolysaccharide (LPS) biosynthesis and lower animal proteins and α-linolenic acid metabolism in Asians with MAFLD compared with the non-MAFLD group. LPS biosynthesis was positively correlated with P. copri (p < 0.05). In conclusion, P. copri emerged as a potential microbial biomarker for MAFLD. These findings enhance our understanding of the pathological mechanisms of MAFLD mediated through the gut microbiota, providing insights for future interventions.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Lipopolisacáridos , Disbiosis , Prevotella/genética
9.
Food Chem Toxicol ; 182: 114110, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879531

RESUMEN

Zearalenone (ZEA) is widely present in food and feed, and pigs are susceptible to its effects. This study explored the underlying function of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) through activation of the JNK signaling pathway and mitochondrial division. This study utilized ESCs to explore the impact of exposure to ZEA. A mitochondrial division inhibitor (Mdivi) was also included as a reference. The results indicated a gradual decrease in cell viability with increasing ZEA concentration. In addition, ZEA can modify the growth status of porcine ESCs, disrupt their ultrastructure, and lead to apoptosis of porcine ESCs via the mitochondrial division pathway and JNK signaling pathway. In summary, our study found the critical targets of ZEA infected with pig ESCs, which provided a conceptual foundation to prevent and control ZEA.


Asunto(s)
Zearalenona , Animales , Porcinos , Zearalenona/toxicidad , Zearalenona/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Apoptosis , Células del Estroma
10.
J Agric Food Chem ; 71(37): 13745-13756, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37682935

RESUMEN

The apoptosis of intestinal porcine epithelial cells induced by soybean antigen protein allergy is one of the most important mechanisms responsible for enteritis. MicroRNAs (miRNAs) affect the cellular and physiological functions of all multicellular organisms. We hypothesize that microRNA-223 inhibits soybean glycinin- and ß-conglycinin-induced apoptosis of intestinal porcine enterocytes (IPEC-J2) by targeting the NLR family pyrin domain containing 3 (NLRP-3). Using the intestinal interepithelial lymphocyte (IEL)/IPEC-J2 co-culture system as an in vitro model, we investigate the role of microRNA-223 in the regulation of soybean glycinin- and ß-conglycinin-induced apoptosis. In co-cultured IEL/IPEC-J2 cells incubated with glycinin or ß-conglycinin, microRNA-223 decreased NLRP-3, ASC, caspase-1, caspase-3, FAS, BCL-2, and APAF-1 expressions in IPEC-J2 cells; decreased cytokine and cyclooxygenase-2 levels; significantly increased cell activity; and inhibited apoptosis. These data supported a novel antiallergic mechanism to mitigate the sensitization of soybean antigenic protein, which involves the upregulation of microRNA-223-targeting NLRP-3.


Asunto(s)
Apoptosis , Glycine max , Animales , Porcinos , Técnicas de Cocultivo
11.
Molecules ; 28(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37764275

RESUMEN

Endoplasmic reticulum (ER) stress is a crucial factor in the pathogenesis of intestinal diseases. Soybean antigenic proteins (ß-conglycinin and soy glycinin) induce hypersensitivity reactions and intestinal barrier damage. However, whether this damage is associated with ER stress, autophagy, and the gut microbiome is largely unclear. Therefore, in this study, we aimed to investigate the effect of dietary supplementation with soy glycinin (11S glycinin) and ß-conglycinin (7S glycinin) on intestinal ER stress, autophagy, and flora in weaned piglets. Thirty healthy 21-day-old weaned "Duroc × Long White × Yorkshire" piglets were randomly divided into three groups and fed a basic, 7S-supplemented, or 11S-supplemented diet for one week. The results indicated that 7S/11S glycinin disrupted growth performance, damaged intestinal barrier integrity, and impaired goblet cell function in piglets (p < 0.05). Moreover, 7S/11S glycinin induced ER stress and blocked autophagic flux in the jejunum (p < 0.05) and increased the relative abundance of pathogenic flora (p < 0.01) and decreased that of beneficial flora (p < 0.05). In conclusion, 7S/11S glycinin induces intestinal ER stress, autophagic flux blockage, microbiota imbalance, and intestinal barrier damage in piglets.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Porcinos , Glycine max , Intestinos , Estrés del Retículo Endoplásmico
12.
Toxins (Basel) ; 15(7)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37505740

RESUMEN

Zearalenone (ZEA) and deoxynivalenol (DON) are widely found in various feeds, which harms livestock's reproductive health. Both mitochondria and endoplasmic reticulum (ER) can regulate cell apoptosis. This study aimed to explore the regulatory mechanism of endoplasmic reticulum stress (ERS) on ZEA- combined with DON-induced mitochondrial pathway apoptosis in piglet Sertoli cells (SCs). The results showed that ZEA + DON damaged the ultrastructure of the cells, induced apoptosis, decreased mitochondrial membrane potential, promoted the expression of cytochrome c (CytC), and decreased the cell survival rate. Furthermore, ZEA + DON increased the relative mRNA and protein expression of Bid, Caspase-3, Drp1, and P53, while that of Bcl-2 and Mfn2 declined. ZEA + DON was added after pretreatment with 4-phenylbutyric acid (4-PBA). The results showed that 4-PBA could alleviate the toxicity of ZEA + DON toward SCs. Compared with the ZEA + DON group, 4-PBA improved the cell survival rate, decreased the apoptosis rate, inhibited CytC expression, and increased mitochondrial membrane potential, and the damage to the cell ultrastructure was alleviated. Moreover, after pretreatment with 4-PBA, the relative mRNA and protein expression of Bid, Caspase-3, Drp1, and P53 were downregulated, while the relative mRNA and protein expression of Bcl-2 and Mfn2 were upregulated. It can be concluded that ERS plays an important part in the apoptosis of SCs co-infected with ZEA-DON through the mitochondrial apoptosis pathway, and intervention in this process can provide a new way to alleviate the reproductive toxicity of mycotoxins.


Asunto(s)
Zearalenona , Masculino , Animales , Porcinos , Zearalenona/toxicidad , Caspasa 3/genética , Células de Sertoli , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Apoptosis , Estrés del Retículo Endoplásmico , Mitocondrias , ARN Mensajero
13.
Eur J Nutr ; 62(7): 2841-2854, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37358571

RESUMEN

PURPOSE: Soybean glycinin (11S) and ß-conglycinin (7S) are major antigenic proteins in soybean and can induce a variety of allergic reactions in the young animals. This study aimed to investigate the effect of 7S and 11S allergens on the intestine of piglets. METHODS: Thirty healthy 21-day-old weaned "Duroc × Long White × Yorkshire" piglets were randomly divided into three groups fed with the basic diet, the 7S supplemented basic diet, or the 11S supplemented basic diet for 1 week. Allergy markers, intestinal permeability, oxidative stress, and inflammatory reactions were detected, and we observed different sections of intestinal tissue. The expressions of genes and proteins related to NOD-like receptor thermal protein domain associated protein 3 (NLRP-3) signaling pathway were detected by IHC, RT-qPCR, and WB. RESULTS: Severe diarrhea and decreased growth rate were observed in the 7S and 11S groups. Typical allergy markers include IgE production and significant elevations of histamine and 5-hydroxytryptamine (5-HT). More aggressive intestinal inflammation and barrier dysfunction were observed in the experimental weaned piglets. In addition, 7S and 11S supplementation increased the levels of 8-hydroxy-2 deoxyguanosine (8-OHdG) and nitrotyrosine, triggering oxidative stress. Furthermore, higher expression levels of NLRP-3 inflammasome ASC, caspase-1, IL-1ß, and IL-18 were observed in the duodenum, jejunum, and ileum. CONCLUSION: We confirmed that 7S and 11S damaged the intestinal barrier of weaned piglets and may be associated with the onset of oxidative stress and inflammatory response. However, the molecular mechanism underlying these reactions deserves further study.


Asunto(s)
Globulinas , Hipersensibilidad , Animales , Porcinos , Glycine max/metabolismo , Proteínas de Soja/efectos adversos , Proteínas de Soja/metabolismo , Intestinos , Globulinas/metabolismo , Estrés Oxidativo
14.
Toxins (Basel) ; 15(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37104191

RESUMEN

This study aimed to investigate the effects of zearalenone (ZEA) on piglet Sertoli cell (SC)-mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) based on mitochondrial fission, and to explore the molecular mechanism of ZEA-induced cell damage. After the SCs were exposed to the ZEA, the cell viability decreased, the Ca2+ levels increased, and the MAM showed structural damage. Moreover, glucose-regulated protein 75 (Grp75) and mitochondrial Rho-GTPase 1 (Miro1) were upregulated at the mRNA and protein levels. However, phosphofurin acidic cluster protein 2 (PACS2), mitofusin2 (Mfn2), voltage-dependent anion channel 1 (VDAC1), and inositol 1,4,5-trisphosphate receptor (IP3R) were downregulated at the mRNA and protein levels. A pretreatment with mitochondrial division inhibitor 1 (Mdivi-1) decreased the ZEA-induced cytotoxicity toward the SCs. In the ZEA + Mdivi-1 group, the cell viability increased, the Ca2+ levels decreased, the MAM damage was repaired, and the expression levels of Grp75 and Miro1 decreased, while those of PACS2, Mfn2, VDAC1, and IP3R increased compared with those in the ZEA-only group. Thus, ZEA causes MAM dysfunction in piglet SCs through mitochondrial fission, and mitochondria can regulate the ER via MAM.


Asunto(s)
Células de Sertoli , Zearalenona , Masculino , Animales , Porcinos , Células de Sertoli/metabolismo , Zearalenona/metabolismo , Dinámicas Mitocondriales , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias , ARN Mensajero/metabolismo , Calcio/metabolismo
15.
Ecotoxicol Environ Saf ; 254: 114710, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36950988

RESUMEN

Zearalenone (ZEA) is an estrogen-like mycotoxin, which mainly led to reproductive toxicity. The study aimed to investigate the molecular mechanism of ZEA-induced dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAM) in piglet Sertoli cells (SCs) via the endoplasmic reticulum stress (ERS) pathway. In this study, SCs were used as a research object that was exposed to ZEA, and ERS inhibitor 4-Phenylbutyrate acid (4-PBA) was used as a reference. The results showed that ZEA damaged cell viability and increased Ca2+ levels; damaged the structure of MAM; up-regulated the relative mRNA and protein expression of glucose-regulated protein 75 (Grp75) and mitochondrial Rho-GTPase 1 (Miro1), while inositol 1,4,5-trisphosphate receptor (IP3R), voltage-dependent anion channel 1 (VDAC1), mitofusin2 (Mfn2) and phosphofurin acidic cluster protein 2 (PACS2) were down-regulated. After a 3 h 4-PBA-pretreatment, ZEA was added for mixed culture. The results of 4-PBA pretreatment showed that inhibition of ERS reduced the cytotoxicity of ZEA against piglet SCs. Compared with the ZEA group, inhibition of ERS increased cell viability and decreased Ca2+ levels; restored the structural damage of MAM; down-regulated the relative mRNA and protein expression of Grp75 and Miro1; and up-regulated the relative mRNA and protein expression of IP3R, VDAC1, Mfn2, and PACS2. In conclusion, ZEA can induce MAM dysfunction in piglet SCs via the ERS pathway, whereas ER can regulate mitochondria through MAM.


Asunto(s)
Zearalenona , Masculino , Animales , Porcinos , Zearalenona/toxicidad , Células de Sertoli/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés del Retículo Endoplásmico
16.
Toxins (Basel) ; 14(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36356008

RESUMEN

Zearalenone (ZEA) is an estrogen-like mycotoxin characterized mainly by reproductive toxicity, to which pigs are particularly sensitive. The aim of this study was to investigate the molecular mechanism of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) by activating the JNK signaling pathway through endoplasmic reticulum stress (ERS). In this study, ESCs were exposed to ZEA, with the ERS inhibitor sodium 4-Phenylbutyrate (4-PBA) as a reference. The results showed that ZEA could damage cell structures, induce endoplasmic reticulum swelling and fragmentation, and decreased the ratio of live cells to dead cells significantly. In addition, ZEA could increase reactive oxygen species and Ca2+ levels; upregulate the expression of GRP78, CHOP, PERK, ASK1 and JNK; activate JNK phosphorylation and its high expression in the nucleus; upregulate the expression Caspase 3 and Caspase 9; and increase the Bax/Bcl-2 ratio, resulting in increased apoptosis. After 3 h of 4-PBA-pretreatment, ZEA was added for mixed culture, which showed that the inhibition of ERS could reduce the cytotoxicity of ZEA toward ESCs. Compared with the ZEA group, ERS inhibition increased cell viability; downregulated the expression of GRP78, CHOP, PERK, ASK1 and JNK; and decreased the nuclear level of p-JNK. The Bax/Bcl-2 ratio and the expression of Caspase 3 and Caspase 9 were downregulated, significantly alleviating apoptosis. These results demonstrate that ZEA can alter the morphology of ESCs, destroy their ultrastructure, and activate the JNK signaling via the ERS pathway, leading to apoptosis.


Asunto(s)
Estrés del Retículo Endoplásmico , Zearalenona , Porcinos , Animales , Zearalenona/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína X Asociada a bcl-2/metabolismo , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células del Estroma/metabolismo
17.
Front Vet Sci ; 9: 890978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782549

RESUMEN

11S glycinin is a major soybean antigenic protein, which induces human and animal allergies. It has been reported to induce intestinal porcine epithelial (IPEC-J2) cell apoptosis, but the role of pyroptosis in 11S glycinin allergies remains unknown. In this study, IPEC-J2 cells were used as an in vitro physiological model to explore the mechanism of 11S glycinin-induced pyroptosis. The cells were incubated with 0, 1, 5, and 10 mg·ml-1 11S glycinin for 24 h. Our results revealed that 11S glycinin significantly inhibited cell proliferation, induced DNA damage, generated active oxygen, decreased mitochondrial membrane potential, and increased the NOD-like receptor protein 3 (NLRP-3) expression of IPEC-J2 cells in a dose-dependent manner. Further, IPEC-J2 cells were transfected with designed sh-NLRP-3 lentivirus to silence NLRP-3. The results showed that 11S glycinin up-regulated the silenced NLRP-3 gene and increased the expression levels of apoptosis-related spot-like protein (ASC), caspase-1, the cleaved gasdermin D, and interleukin-1ß. The IPEC-J2 cells showed pyrolysis morphology. Moreover, we revealed that N-acetyl-L-cysteine can significantly inhibit the production of reactive oxygen species and reduce the expression levels of NLRP-3 and the cleaved gasdermin D. Taken together, 11S glycinin up-regulated NLRP-3-induced pyroptosis by triggering reactive oxygen species in IPEC-J2 cells.

18.
Front Vet Sci ; 9: 907299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711805

RESUMEN

Rutin, a common dietary flavonoid, exhibits remarkable pharmacological activities such as antioxidant and anti-inflammatory functions. Metabolic stress in mammals during the transition period affects mammary gland health. The aim of this experiment was to evaluate the protective effect of rutin supplementing against metabolic stress in the mammary glands of sheep during the transition period, particularly after parturition. Transition Hu sheep (2-3 years old with 62.90 ± 2.80 kg) were randomly divided into three groups, the control group was fed a diet without rutin, while rutin (50 and 100 mg/kg body weight/day) was administered to the two treatment groups (-28 day to +28 day relative to parturition). Serum and blood samples were collected from jugular vein on days -14, -7, +1, +2, +7, +14, +21, +28 relative to parturition. Mammary tissue biopsy samples of four sheep from the treatment group were harvested on day +28 postpartum. Compared to that in the control group, rutin supplementation resulted in lower ß-hydroxybutyrate (BHBA) while increasing the concentrations of non-esterified fatty acids (NEFA) and globulin after lactation. Furthermore, rutin treatment led to lower hydrogen peroxide (H2O2) and malonaldehyde (MDA) levels, resulting in increased catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant potential (T-AOC). Compared to that in the control group, rutin inhibits the mRNA expression of inflammatory markers such as tumor necrosis factor-α (TNF-α). In addition, rutin markedly downregulated the ratio of phosphorylated NF-κB p65 (p-p65) to total NF-κB p65 (p65). Meanwhile, rutin supplementation resulted in high mRNA abundance of the nuclear factor erythroid 2-like 2 (NFE2L2, formerly NRF2) and its target gene, heme oxygenase-1 (HO-1), which plays critical roles in maintaining the redox balance of the mammary gland. Furthermore, rutin treatment lowered the levels of various downstream apoptotic markers, including Bax, caspase3 and caspase9, while upregulating anti-apoptotic Bcl-2 protein. These data indicate the positive effect of rutin against inflammation, oxidative stress status, and anti-apoptotic activity in the mammary gland. The mechanism underlying these responses merits further study.

19.
J Tissue Eng Regen Med ; 16(8): 744-756, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35633489

RESUMEN

Tissue-engineered blood vessels (TEBVs) show significant therapeutic potential for replacing diseased blood vessels. Vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (hiPSCs) via embryoid body (EB)-based differentiation, are promising seed cells to construct TEBVs. However, obtaining sufficient high-quality hiPSC-VSMCs remains challenging. Stem cells are located in a niche characterized by hypoxia. Hence, we explored molecular and cellular functions at different induction stages from the EB formation commencement to the end of directed differentiation under normoxic and hypoxic conditions, respectively. Hypoxia enhanced the formation, adhesion and amplification rates of EBs. During directed differentiation, hiPSC-VSMCs exhibited increased cell viability under hypoxic conditions. Moreover, seeding hypoxia-pretreated cells on biodegradable scaffolds, facilitated collagen I and elastin secretion, which has significant application value for TEBV development. Hence, we proposed that hypoxic treatment during differentiation effectively induces proliferative hiPSC-VSMCs, expanding high-quality seed cell sources for TEBV construction.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Proliferación Celular , Humanos , Hipoxia , Miocitos del Músculo Liso , Ingeniería de Tejidos , Andamios del Tejido
20.
Toxins (Basel) ; 14(2)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35202172

RESUMEN

T-2 toxin usually co-occurs with HT-2 toxin and neosolaniol (NEO) in the grains and feed. Our previous studies found that T-2 toxin and its metabolites' binary or ternary combination exposure to porcine Leydig cells (LCs) displayed synergism in certain range of dosage and cannot be predicted based on individual toxicity. However, the possible mechanism of these mycotoxins' combined exposure to cell lesions remains unknown. Based on 50% cell viability, the mechanism of apoptosis in porcine Leydig cells was investigated after exposure to T-2, HT-2, NEO individual and binary or ternary combinations. Compared with control, the adenosine triphosphate (ATP) content decreased, reactive oxygen species (ROS) level increased, and mitochondrial membrane potential (MMP) decreased in all treated groups. Additionally, the cell apoptosis rates were significantly increased in test groups (p < 0.05), and the B-cell lymphoma 2 (Bcl-2) Associated X (Bax)/Bcl-2 ratio and the expression of caspase 3, caspase 8, cytochrome c (Cytc) in the treated group are all significantly higher than the control group. Moreover, the expression of Cytc and caspase 8 gene in NEO and T-2+NEO groups was significantly higher than that in other individual and combined groups. It can be concluded that the toxicities of T-2, HT-2, and NEO individually and in combination can induce apoptosis related to the oxidative stress and mitochondrial damage, and the synergistic effect between toxins may be greater than a single toxin effect, which is beneficial for assessing the possible risk of the co-occurrences in foodstuffs to human and animal health.


Asunto(s)
Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Micotoxinas/toxicidad , Toxina T-2/análogos & derivados , Toxina T-2/toxicidad , Tricotecenos/toxicidad , Animales , Modelos Animales de Enfermedad , Combinación de Medicamentos , Masculino , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA