Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem ; 404(Pt A): 134582, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36257261

RESUMEN

Zinc bioavailability with the presence of other elements in wheat grains might be affected by fertilizers. A long-term field experiment was conducted to examine effects of N fertilizer on Zn bioavailability in wheat grain tissues, with changes in the concentrations, distribution, and speciation of Zn as well as P and sulfur S via synchrotron-based technology. Results showed that addition of N fertilizer was associated with changes in Zn concentrations and distributions in grain tissues, especially in the crease region and endosperm. Simultaneously, N addition enhanced Zn-S colocalization in the crease region and endosperm and lowered the P/Zn ratio and Zn-P colocalization. Addition of N fertilizer with P increased Zn-cysteine (9.2%) and decreased Zn-phytate (47.3%) in the crease region, leading to potentially higher grain Zn bioavailability. Thus, addition of N fertilizer improved concentrations and bioavailability of Zn, by coordinating the relationships among Zn, P and S within wheat grains.


Asunto(s)
Fertilizantes , Triticum , Fertilizantes/análisis , Disponibilidad Biológica , Grano Comestible/química , Zinc
2.
Appl Opt ; 61(27): 8006-8016, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36255922

RESUMEN

The white top-hat transformation has been widely used in small bright target extraction. It usually applies an erosion operation to remove the target and then a dilation operation to recover the intensity of the processed image. A bright target will be extracted by subtracting the opening operation (erosion followed by dilation) from the raw image. The drawback of this method is that its denoising ability is poor because the estimated background threshold by an opening operation is smaller than the raw image. This study puts forward the viewpoint that by use of a proposed one-dimensional (1D) symmetrical line-shaped structuring element a bright target can also be removed by the dilation operation. Consequently, the white top-hat transformation can be implemented by subtracting only the dilation operation from the raw image. To the best knowledge of the authors, it is the first time to use this method to achieve the top-hat transformation. The simulation experiment shows that the proposed 1D top-hat algorithm has excellent performance in denoising ability and detection ability. Moreover, real night experiments demonstrate that our proposed algorithm can work reliably under both complicated background conditions and good weather conditions. It is noticeable that the performance of computational efficiency and resource consumption have been considerably improved because a 1D structuring element is employed and the erosion operation is not included.

3.
Appl Opt ; 61(24): 6992-6999, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36256314

RESUMEN

Using a short-wave infrared (SWIR) camera to improve daytime star detection ability has become a trend for near-ground star trackers. However, the noise of SWIR star images greatly decreases the accuracy of the attitude measurement results. Aiming at a real-time application of the star tracker, an adaptive section non-uniformity correction method based on the two-point correction algorithm for SWIR star images is proposed. The correction parameters of different sections are first calculated after the defective pixels are detected and excluded, and the real-time image is corrected using adaptive section parameters according to its gray value distribution. Finally, the defective pixels are compensated for by their adjacent corrected pixels. The correction results of both simulated and live-shot star images have verified the validity of the proposed method. It adapts to different sky background radiation, which is effective for the application of a star tracker. By comparing with other linear correction methods, it has the advantages of low calculation complexity, better real-time performance, and easier implementation in the hardware.

4.
J Agric Food Chem ; 70(30): 9346-9355, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35852475

RESUMEN

Increasing iron (Fe) and zinc (Zn) concentrations in crop grains with high yield is an effective measure to ensure food supply and alleviate mineral malnutrition in humans. Micronutrient concentrations in grains depend on not only their availability in soils but also their uptake in roots and translocation to shoots and grains. In this three-year field study, we investigated genotypic variation in Fe and Zn uptake and translocation within six wheat cultivars and examined in detail Fe and Zn distributions in various tissues of two cultivars with similar high yield but different grain Fe and Zn concentrations using synchrotron micro-X-ray fluorescence. Results revealed that root Fe and Zn concentrations were 11 and 44% greater in high-nutrient (HN) than in low-nutrient (LN) concentration cultivar. Although both cultivars accumulated similar amounts of Fe in shoots, HN cultivar had greater accumulation of Fe in grain and greater accumulation of Zn in both shoots and grain. Grain Zn concentration was positively correlated with shoot Zn accumulation, and grain Fe concentration was positively correlated with the ability to translocate Fe from leaves/stem to grains. In the first nodes of shoots, HN cultivar had 482% greater Fe and 36% greater Zn concentrations in the enlarged vascular bundle (EVB) than LN cultivar. In top nodes, HN cultivar had 225 and 116% greater Fe and Zn concentrations in the transit vascular bundle and 77 and 71% greater in the EVB when compared to LN cultivar. HN cultivar also had a greater ability to allocate Fe and Zn to the grain than LN cultivar. In conclusion, HN cultivar had greater capacity of Fe and Zn acquirement by roots and translocation and partitioning from shoots into grains. Screening wheat cultivars for larger Fe and Zn concentrations in shoot nodes could be a novel strategy for breeding crops with greater grain Fe and Zn concentrations.


Asunto(s)
Triticum , Zinc , Grano Comestible , Fluorescencia , Humanos , Hierro , Fitomejoramiento , Sincrotrones , Triticum/genética , Rayos X
5.
Appl Opt ; 61(11): 3115-3122, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35471287

RESUMEN

Star tracker is the most precise attitude measuring device, and its advantages include a high resolution and high update rate. Star centroid extraction, which is a very time-consuming process, has great influence on the attitude update rate. This paper proposes a real-time star centroid extraction algorithm based on a field programmable gate array. First, a 1D top-hat filter is used for star segmentation, which is suitable for both uniform and nonuniform background conditions. Second, multichannel image data is reorganized together into a complete frame through image stitching, which prevents the star spots on the channel boundary from being divided into different parts. Finally, star coordinates are extracted by the center-of-mass algorithm. For an image sensor with a resolution of 2048×2048 pixels, simulation results conducted by a ModelSim simulator show that the star centroid processing time of a single frame is roughly 5.2 ms. Real night experiments demonstrate that the standard deviation of a star centroid error is within 10-2 pixel and the standard deviation of attitude is (2.6 2.2 12.0) arcseconds, which proves that the proposed star centroid extraction algorithm can work continuously and stably.

6.
J Agric Food Chem ; 69(38): 11196-11203, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34528796

RESUMEN

Improving the concentration and bioavailability of zinc (Zn) in cereal grains is an important way to solve the problem of Zn deficiency in human body. The bioavailability of Zn is related to both its distribution and speciation in grains. In the current study, we examined the differences of Zn concentration, distribution, and speciation within grains among wheat cultivars with similar high grain yield but contrasting grain Zn concentration using synchrotron micro X-ray fluorescence (µ-XRF) and X-ray absorption near-edge structure (XANES). Results showed that compared to the low-Zn cultivar, the Zn concentration was 103, 50, 76, 33, and 64% higher in the crease region, aleurone layer, scutellum, embryonic axis, and endosperm of the high-Zn cultivar, respectively. Zinc mainly colocalized with phosphorus (P) in the aleurone layer and the scutellum, but less colocalization of Zn with P and a much lower concentration ratio of P/Zn were found in the high-Zn cultivar. Sulfur (S) is present in the form of scattered spots in the endosperm in accord with Zn, but the colocalization of Zn with S was predominant in the modified aleurone layer and the nucellar projection of the high-Zn cultivar. XANES results showed the lower proportion of Zn-phytate in the high-Zn cultivar. Findings indicated that it is possible to select the high-yield wheat cultivar with both high grain Zn concentration and high bioavailability, which provide a new perspective for genetic Zn biofortification.


Asunto(s)
Grano Comestible , Triticum , Biofortificación , Disponibilidad Biológica , Humanos , Zinc
7.
Front Microbiol ; 12: 689855, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248914

RESUMEN

An effective solution to global human zinc (Zn) deficiency is Zn biofortification of staple food crops, which has been hindered by the low available Zn in calcareous soils worldwide. Many culturable soil microbes have been reported to increase Zn availability in the laboratory, while the status of these microbes in fields and whether there are unculturable Zn-mobilizing microbes remain unexplored. Here, we use the culture-independent metagenomic sequencing to investigate the rhizosphere microbiome of three high-Zn (HZn) and three low-Zn (LZn) wheat cultivars in a field experiment with calcareous soils. The average grain Zn concentration of HZn was higher than the Zn biofortification target 40 mg kg-1, while that of LZn was lower than 40 mg kg-1. Metagenomic sequencing and analysis showed large microbiome difference between wheat rhizosphere and bulk soil but small difference between HZn and LZn. Most of the rhizosphere-enriched microbes in HZn and LZn were in common, including many of the previously reported soil Zn-mobilizing microbes. Notably, 30 of the 32 rhizosphere-enriched species exhibiting different abundances between HZn and LZn possess the functional genes involved in soil Zn mobilization, especially the synthesis and exudation of organic acids and siderophores. Most of the abundant potential Zn-mobilizing species were positively correlated with grain Zn concentration and formed a module with strong interspecies relations in the co-occurrence network of abundant rhizosphere-enriched microbes. The potential Zn-mobilizing species, especially Massilia and Pseudomonas, may contribute to the cultivars' variation in grain Zn concentration, and they deserve further investigation in future studies on Zn biofortification.

8.
Sci Total Environ ; 787: 147608, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000558

RESUMEN

The physiological disorders in humans resulting from the excess dietary intake of manganese (Mn) via whole-grain food has attracted considerable attention. However, the speciation and bioavailability of Mn in wheat grains and their response to different phosphorus (P) fertilization rates are still unclear. In the current study, using a long-term field trial with P application rates of 0, 21.8, 43.6, 65.5 and 87.3 kg/ha, we examined changes in the concentration, distribution, and speciation of Mn of wheat grains using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy. The total Mn concentration in grains was found to be increased by phosphorus fertilization, especially in embryo in the form of Mn(II), but this phosphorus fertilization also decreased Mn concentrations in the nucellar projection. In this study, the speciation of Mn in different wheat grain tissues was examined, and results indicate that in calcareous soils, high rates of P fertilizers can increase Mn concentrations in wheat grain, including Mn which is likely to be of high bioavailability, and thus may increase the risk for human to expose to high Mn intake via whole-grain food.


Asunto(s)
Suelo , Triticum , Fertilización , Fertilizantes/análisis , Humanos , Manganeso , Fósforo
9.
Rev Sci Instrum ; 92(3): 035001, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820019

RESUMEN

The stellar/inertial integrated navigation system, which combines the inertial navigation system (INS) and the star tracker, can restrain the accumulated INS errors. In the traditional loosely coupled stellar/inertial integration method, the star tracker needs to observe more than two navigation stars on an image for attitude determination and to use the attitude information as the observation to estimate the systematic errors of the INS. However, under strong background radiation conditions, the star number in the field of view (FOV) usually drops below 3; thus, the loosely coupled method fails to work. To overcome this difficulty, an improved tightly coupled stellar/inertial integration method based on the observation of the star centroid prediction error (SCPE) is proposed in this paper. It calculates the difference between the extracted star centroid and the predicted star centroid, namely, the SCPE, as the observation and then estimates the INS errors with a Kalman filter. Numerical simulations and ground experiments are conducted to validate the feasibility of the tightly coupled method. It is proved that the proposed method, which makes full use of all star observation information, can improve the navigation accuracy compared with the loosely coupled method and is more robust when there are not enough stars in the FOV.

10.
Appl Opt ; 60(8): 2372-2379, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33690337

RESUMEN

A star tracker should be well calibrated before it is equipped in order to achieve high accuracy. There exists, however, the coupling problem between the internal and external parameters for most commonly used laboratory calibration methods, which affect the star tracker's performance. We theoretically analyze the major aspects of the coupling mechanism based on the star tracker laboratory calibration model, which means the coupling between the principal point and the installation angle. The concept of equivalent principal point error, which illustrates the effectiveness of the calibration even with poor decoupling accuracy between the principal point and the installation angle, is introduced. Simulation and bench experiments are conducted to verify the laboratory calibration method and its coupling mechanism. The decoupling accuracy can be improved with more samples during calibration. In addition, the equivalent principal point error converges quickly and hardly affects the attitude of the star tracker, which is verified by both theory and experiment. The comprehensive calibration accuracy can still reach a high level even with poor decoupling accuracy.

11.
Opt Express ; 27(11): 15548-15564, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163750

RESUMEN

When applied inside Earth's atmosphere, the star tracker is sensitive to sky background produced by atmospheric scattering and stray light. The shot noise induced by the strong background reduces star detection capability and even makes it completely out of operation. To improve the star detection capability, an attitude-correlated frames adding (ACFA) approach is proposed in this paper. Firstly, the attitude changes of the star tracker are measured by three gyroscope units (GUs). Then the mathematical relationship between the image coordinates at different time and the attitude changes of the star tracker is constructed (namely attitude-correlated transformation, ACT). Using the ACT, the image regions in different frames that correspond to the same star can be extracted and added to the current frame. After attitude-correlated frames adding, the intensity of the star signal increases by n times, while the shot noise increases by n~n/2 times due to its stochastic characteristic. Consequently, the signal-to-noise ratio (SNR) of the star image enhances by a factor of n~2n. Simulations and experimental results indicate that the proposed method can effectively improve the star detection ability. Hence, there are more dim stars detected and used for attitude determination. In addition, the star centroiding error induced by the background noise can also be reduced.

12.
Sensors (Basel) ; 19(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974890

RESUMEN

This paper investigates the attitude estimation errors caused by the deflections of vertical (DOV) in the case of a rotational inertial navigation system (INS) integrated with a global satellite navigation system (GNSS). It has been proved theoretically and experimentally that the DOV can introduce a tilt error to the INS/GNSS integration, whereas less attention has been given to its effect to the heading estimation. In fact, due to the intercoupling characteristic of attitude errors, the heading estimation of an INS/GNSS integrated navigation system can also be affected. In this paper, first, the attitude estimation errors caused by DOV were deduced based on the INS's error propagation functions. Then, the corresponding simulations were conducted and the results were well consistent with the theoretical analysis. Finally, a real shipborne marine test was organized with the aimed to verify the effect of DOV on attitude estimation in the rotational INS/GNSS integration, whereas the global gravity model was used for DOV compensation. The results with DOV compensation were compared with the corresponding results where the compensation was not used and showed that the heading estimation errors caused by DOV could exceed 20 arcsecs, which must be considered in high-precision application cases.

13.
Appl Opt ; 57(32): 9589-9595, 2018 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-30461739

RESUMEN

Carried on the deck of the satellite maritime tracking and control ship, Yuan Wang 6, we have conducted a long-term on-ship dynamic experiment for a star sensor in the South Pacific. Motion-blurred star images of the star sensor obtained under different dynamic conditions are processed by our previously proposed region confined restoration method method, after which the SNR of the motion-blurred star images and the identification rate of the star sensor have been improved remarkably. With the attitude-correlated frames approach, the random noise aroused by the motion of the ship is reduced further. As a result, considering the accuracy and star observation length of the ship-borne star sensor, we believe reported for the first time, a three-axis attitude accuracy of better than 5 arcseconds is obtained in our on-ship experiment.

14.
Sensors (Basel) ; 18(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223523

RESUMEN

The integration of a star tracker and gyroscope units (GUs) can take full advantage of the benefits of each, and provide continuous and accurate attitude information with a high update rate. The systematic error calibration of the integrated system is a crucial step to guarantee its attitude accuracy. In this paper, a comprehensive calibration method for the star tracker and GUs integrated system is proposed from a global perspective. Firstly, the observation model of the predicted star centroid error (PSCE) with respect to the systematic errors including the star tracker intrinsic parameter errors, GUs errors and fixed angle errors is accurately established. Then, the systematic errors are modeled by a series of differential equations, based on which the state-space model is established. Finally, the systematic errors are decoupled and estimated by a Kalman filter according to the established state-space model and observation model. The coupling between the errors of the principal point and subcomponents of the fixed angles (i.e., Ψ x and Ψ y ) is analysed. Both simulations and experiments indicate that the proposed method is effective at estimating the systematic errors of the star tracker and GUs integrated system with high accuracy and robustness with respect to different star centroid accuracies and gyroscope noise levels.

15.
Appl Opt ; 57(16): 4551-4557, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29877358

RESUMEN

Due to the temperature delay effect, the coefficients of the traditional ring laser gyroscope's (RLG) bias temperature model usually change with environmental temperature. In order to improve the applicability of the temperature model in complex temperature-varying environments, a modified RLG bias modeling method based on the temperature delay effect is proposed. The time series model (TSM), whose coefficients are independent of the environmental temperature variation, is established through theoretical analysis according to the temperature delay effect. The forecasting accuracy of the proposed method is compared with the conventional stepwise regression model (SRM) when both the temperature and temperature-varying rate exceed their boundaries. The experimental results indicate that the proposed TSM can overcome the defect that the compensation accuracy will decline or even diverge when outside the boundaries of temperature and temperature-varying rate. Therefore, the TSM is more suitable for the RLG bias temperature modeling in complex temperature-varying environments.

16.
Appl Opt ; 55(17): 4621-31, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27409019

RESUMEN

Under dynamic conditions, the centroiding accuracy of the motion-blurred star image decreases and the number of identified stars reduces, which leads to the degradation of the attitude accuracy of the star sensor. To improve the attitude accuracy, a region-confined restoration method, which concentrates on the noise removal and signal to noise ratio (SNR) improvement of the motion-blurred star images, is proposed for the star sensor under dynamic conditions. A multi-seed-region growing technique with the kinematic recursive model for star image motion is given to find the star image regions and to remove the noise. Subsequently, a restoration strategy is employed in the extracted regions, taking the time consumption and SNR improvement into consideration simultaneously. Simulation results indicate that the region-confined restoration method is effective in removing noise and improving the centroiding accuracy. The identification rate and the average number of identified stars in the experiments verify the advantages of the region-confined restoration method.

17.
Appl Opt ; 54(25): 7559-66, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26368878

RESUMEN

The attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques. The attitude transforms between different star image frames are measured by the strap-down gyro unit precisely. With the ACF method, a much larger star image frame is obtained through the combination of adjacent frames. As a result, the degradation of attitude accuracy caused by motion-blurring are compensated for. The improvement of the attitude accuracy is approximately proportional to the square root of the number of correlated star image frames. Simulations and experimental results indicate that the ACF approach is effective in removing random noises and improving the attitude determination accuracy of the star sensor under highly dynamic conditions.

18.
Appl Opt ; 53(29): 6629-34, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25322363

RESUMEN

We propose a precise rolling angle measurement for a collimator to extend its application in 3D angular deformation measurement, with performance significantly superior to that of the traditional 2D technique. The rolling angle measurement is realized by taking full advantage of the point array image, which is projected in terms of the collimated beam. The measurement error is estimated according to the proposed algorithm. The characteristics of the point array are analyzed to optimize the point array for precise measurement, including the point distribution, the point array resolution, and the point array area. Both simulations and experiments demonstrate that subarcsecond precision rolling angle measurement is achieved by our method, which is superior to those attained by other proposed targets.

19.
Sensors (Basel) ; 14(9): 16322-42, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25192311

RESUMEN

A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch-Tung-Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...