RESUMEN
Many insects, including green lacewings, migrate seasonally to exploit suitable breeding and winter habitats. Green lacewings are important natural enemies of insect pests worldwide. Here, four dominant green lacewing species, Chrysoperla nipponensis (Okamoto), Chrysopa pallens (Rambur), Chrysoperla furcifera (Okamoto), and Chrysopa formosa Brauer, were investigated for their ability to migrate between northern and northeastern China across the Bohai Strait from late May to late October each year. Furthermore, there were significant interannual and seasonal differences in the number of migratory green lacewings collected. The number of green lacewings in spring was significantly lower than that in summer and autumn, and the highest average number of green lacewings occurred in June. In addition, there were differences in the sex ratio of migrating green lacewings between months, with a greater proportion of females than males. Finally, the seasonal migration trajectories simulated by the HYSPLIT model revealed that the green lacewings captured on Beihuang Island primarily originated from Shandong Province. Accordingly, these findings contribute to our understanding of green lacewing migration in eastern Asia and aid its incorporation within integrated pest management (IPM) packages for several crop pests. Furthermore, long-term tracking of migrant insect populations can reveal ecosystem services and trophic dynamic processes at the macroscale.
RESUMEN
Perfluorocarbon (PFC) nanodroplets (NDs) are expanding in a wide range of applications in biotechnology and nanotechnology. Their efficacy in biological systems is significantly influenced by their size uniformity and stability within bioelectrolyte contexts. Presently, methods for creating monodisperse, highly concentrated, and well-stabilized PFC NDs under harsh conditions using low energy consumption methods have not been thoroughly developed, and their stability has not been sufficiently explored. This gap restricts their applicability for advanced medical interventions in tissues with high pH levels and various electrolytic conditions. To tackle these challenges and to circumvent potential toxicity from surface stabilizers, we have conducted an in-depth investigation into the formation and stability of uncoated perfluorohexane (PFH) NDs, which were synthesized by using a low-energy consumption solvent exchange technique, across complex electrolyte compositions or a broad spectrum of pH levels. The results indicated that low concentrations of low-valent electrolyte ions facilitate the nucleation of NDs and consistently accelerate Ostwald ripening over an extended period. Conversely, high concentrations of highly valent electrolyte ions inhibit nucleation and decelerate the ripening process over time. Given the similarities between the properties of NDs and nanobubbles, we propose a potential stabilization mechanism. Electrolytes influence the Ostwald ripening of NDs by adjusting the adsorption and distribution of ions on the NDs' surface, modifying the thickness of the electric double layer, and fine-tuning the energy barrier between droplets. These insights enable precise control over the stability of PFC NDs through the meticulous adjustment of the surrounding electrolyte composition. This offers an effective preparation method and a theoretical foundation for employing bare PFC NDs in physiological settings.
RESUMEN
Background: The beet armyworm, Spodoptera exigua (Hübner), is an important agricultural pest worldwide that has caused serious economic losses in the main crop-producing areas of China. To effectively monitor and control this pest, it is crucial to investigate its population dynamics and seasonal migration patterns in northern China. Methods: In this study, we monitored the population dynamics of S. exigua using sex pheromone traps in Shenyang, Liaoning Province from 2012 to 2022, combining these data with amigration trajectory simulation approach and synoptic weather analysis. Results: There were significant interannual and seasonal variations in the capture number of S. exigua, and the total number of S. exigua exceeded 2,000 individuals in 2018 and 2020. The highest and lowest numbers of S. exigua were trapped in September and May, accounting for 34.65% ± 6.81% and 0.11% ± 0.04% of the annual totals, respectively. The average occurrence period was 140.9 ± 9.34 days during 2012-2022. In addition, the biomass of S. exigua also increased significantly during these years. The simulated seasonal migration trajectories also revealed varying source regions in different months, primarily originated from Northeast China and East China. These unique insights into the migration patterns of S. exigua will contribute to a deeper understanding of its occurrence in northern China and provide a theoretical basis for regional monitoring, early warning, and the development of effective management strategies for long-range migratory pests.
Asunto(s)
Agricultura , Humanos , Animales , Spodoptera , Estaciones del Año , Dinámica Poblacional , China/epidemiologíaRESUMEN
BACKGROUND: Mitotic clonal expansion (MCE) is a prerequisite for preadipocyte differentiation and adipogenesis. Epigallocatechin gallate (EGCG) has been shown to inhibit preadipocyte differentiation. However, the exact molecular mechanisms are still elusive. PURPOSE: This study investigated whether EGCG could inhibit adipogenesis and lipid accumulation by regulating the cell cycle in the MCE phase of adipogenesis and its underlying molecular mechanisms. METHOD: 3T3-L1 preadipocytes were induced to differentiate by a differentiation cocktail (DMI) and were treated with EGCG (25-100 µM) for 9, 18, and 24 h to examine the effect on MCE, or eight days to examine the effect on terminal differentiation. C57BL/6 mice were fed a high-fat diet (HFD) for three months to induce obesity and were given EGCG (50 or 100 mg/kg) daily by gavage. RESULTS: We showed that EGCG significantly inhibited terminal adipogenesis and lipid accumulation in 3T3-L1 cells and decreased expressions of PPARγ, C/EBPα, and FASN. Notably, at the MCE phase, EGCG regulated the cell cycle in sequential order, induced G0/G1 arrest at 18 h, and inhibited the G2/M phase at 24 h upon DMI treatment. Meanwhile, EGCG regulated the expressions of cell cycle regulators (cyclin D1, cyclin E1, CDK4, CDK6, cyclin B1, cyclin B2, p16, and p27), and decreased C/EBPß, PPARγ, and C/EBPα expressions at MCE. Mechanistic studies using STAT3 agonist Colivelin and antagonist C188-9 revealed that EGCG-induced cell cycle arrest in the MCE phase and terminal adipocyte differentiation was mediated by the inhibition of JAK2/STAT3 signaling cascades and STAT3 (Tyr705) nuclear translocation. Furthermore, EGCG significantly protected mice from HFD-induced obesity, reduced body weight and lipid accumulations in adipose tissues, reduced hyperlipidemia and leptin levels, and improved glucose intolerance and insulin sensitivity. Moreover, RNA sequencing (RNA-seq) analysis showed that the cell cycle changes in epididymal white adipose tissue (eWAT) were significantly enriched upon EGCG treatment. We further verified that EGCG treatment significantly reduced expressions of adipogenic factors, cell cycle regulators, and p-STAT3 in eWAT. CONCLUSION: EGCG inhibits MCE, resulting in the inhibition of early and terminal adipocyte differentiation and lipid accumulation, which were mediated by inhibiting p-STAT3 nucleus translocation and activation.
Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Catequina , Dieta Alta en Grasa , Janus Quinasa 2 , Ratones Endogámicos C57BL , Factor de Transcripción STAT3 , Animales , Catequina/farmacología , Catequina/análogos & derivados , Ratones , Factor de Transcripción STAT3/metabolismo , Adipogénesis/efectos de los fármacos , Janus Quinasa 2/metabolismo , Adipocitos/efectos de los fármacos , Masculino , Mitosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Obesidad/tratamiento farmacológico , PPAR gamma/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacosRESUMEN
Photodynamic therapy (PDT) stands as an efficacious modality for the treatment of cancer and various diseases, in which optimization of the electron transfer and augmentation of the production of lethal reactive oxygen species (ROS) represent pivotal challenges to enhance its therapeutic efficacy. Empirical investigations have established that the spontaneous initiation of redox reactions associated with electron transfer is feasible and is located in the gas-liquid interfaces. Meanwhile, nanobubbles (NBs) are emerging as entities capable of furnishing a plethora of such interfaces, attributed to their stability and large surface/volume ratio in bulk water. Thus, NBs provide a chance to expedite the electron-transfer kinetics within the context of PDT in an ambient environment. In this paper, we present a pioneering exploration into the impact of nitrogen nanobubbles (N2-NBs) on the electron transfer of the photosensitizer levofloxacin (LEV). Transient absorption spectra and time-resolved decay spectra, as determined through laser flash photolysis, unequivocally reveal that N2-NBs exhibit a mitigating effect on the decay of the LEV excitation triplet state, thereby facilitating subsequent processes. Of paramount significance is the observation that the presence of N2-NBs markedly accelerates the electron transfer of LEV, albeit with a marginal inhibitory influence on its energy-transfer reaction. This observation is corroborated through absorbance measurements and offers compelling evidence substantiating the role of NBs in expediting electron transfer within the ambit of PDT. The mechanism elucidated herein sheds light on how N2-NBs intricately influence both electron-transfer and energy-transfer reactions in the photosensitizer LEV. These findings not only contribute to a nuanced understanding of the underlying processes but also furnish novel insights that may inform the application of NBs in the realm of photodynamic therapy.
Asunto(s)
Levofloxacino , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Levofloxacino/farmacología , Procesos Fotoquímicos , Oxidación-Reducción , Transporte de ElectrónRESUMEN
Single-atom catalysts (SACs) possess the potential to involve the merits of both homogeneous and heterogeneous catalysts altogether and thus have gained considerable attention. However, the large-scale synthesis of SACs with rich isolate-metal sites by simple and low-cost strategies has remained challenging. In this work, we report a facile one-step pyrolysis that automatically produces SACs with high metal loading (5.2-15.9 wt %) supported on two-dimensional nitro-oxygenated carbon (M1-2D-NOC) without using any solvents and sacrificial templates. The method is also generic to various transition metals and can be scaled up to several grams based on the capacity of the containers and furnaces. The high density of active sites with N/O coordination geometry endows them with impressive catalytic activities and stability, as demonstrated in the oxygen reduction reaction (ORR). For example, Fe1-2D-NOC exhibits an onset potential of 0.985 V vs RHE, a half-wave potential of 0.826 V, and a Tafel slope of -40.860 mV/dec. Combining the theoretical and experimental studies, the high ORR activity could be attributed its unique FeO-N3O structure, which facilitates effective charge transfer between the surface and the intermediates along the reaction, and uniform dispersion of this active site on thin 2D nanocarbon supports that maximize the exposure to the reactants.
RESUMEN
An integrated computer software system for macromolecular crystallography (MX) data collection at the BL02U1 and BL10U2 beamlines of the Shanghai Synchrotron Radiation Facility is described. The system, Finback, implements a set of features designed for the automated MX beamlines, and is marked with a user-friendly web-based graphical user interface (GUI) for interactive data collection. The Finback client GUI can run on modern browsers and has been developed using several modern web technologies including WebSocket, WebGL, WebWorker and WebAssembly. Finback supports multiple concurrent sessions, so on-site and remote users can access the beamline simultaneously. Finback also cooperates with the deployed experimental data and information management system, the relevant experimental parameters and results are automatically deposited to a database.
RESUMEN
Melochia corchorifolia Linnaeus, 1753, is a weedy tropical plant of the Sterculiaceae family and has medicinal value. We sequenced the complete chloroplast genome of M. corchorifolia using Illumina high-throughput sequencing and examined phylogenetic relationships with closely related species. The assembled chloroplast genome of M. corchorifolia was 163,693 bp long and contained a pair of inverted repeats of 29,729 bp, separated by a large single-copy sequence of 84,350 bp and a small single-copy region of 19,885 bp. A total of 136 genes were annotated across the entire chloroplast genome, including 37 transfer RNA, 8 ribosomal RNA, and 91 protein-coding genes. The GC content of the complete cp genome was 37.27%. The phylogenetic tree indicated that M. corchorifolia is closely related to Melochia pyramidata (Malvaceae). These results would provide useful information for future phylogenetic, taxonomic, and evolutionary studies on Sterculiaceae and Malvaceae.
RESUMEN
BACKGROUND: The sterile insect technique (SIT) has proven to be an effective approach in managing the population of major invasive pests. Our previous studies showed that irradiation of Cydia pomonella males at a dosage of 366 Gy X-rays resulted in complete sterility. However, the mating competitiveness of sterilized males is significantly compromised, which can be attributed to a decline in their ability to fly. RESULTS: In this study, we examined the flight patterns of both male and female adults of C. pomonella. The results revealed significant variations in the average flight speed of both genders at different stages of maturity, with females displaying longer flight duration and covering greater distances. Effect of irradiation on the flight performance of 3-day-old male moths was further evaluated, as they demonstrated the longest flight distance. The findings indicated a significant decrease in flight distance, duration, and average speed, due to wing deformities caused by irradiation, which also limited the dispersal distance of moths in orchards, as indicated by the mark-and-recapture assay. Reverse-transcription quantitative polymerase chain reaction analysis revealed a down-regulation of flight-related genes such as Flightin, myosin heavy chain, and Distal-less following radiation exposure. CONCLUSION: These findings demonstrate that X-ray irradiation at a radiation dose of 366 Gy has a detrimental effect on the flight ability of male C. pomonella adults. These insights not only contribute to a better understanding of how radiation sterilization diminishes the mating competitiveness of male moths, but also aid in the development and improvement of SIT practices for the effective control of C. pomonella. © 2023 Society of Chemical Industry.
Asunto(s)
Infertilidad , Mariposas Nocturnas , Animales , Femenino , Masculino , Rayos XRESUMEN
The codling moth, Cydia pomonella (L.), is an invasive agricultural pest of pome fruits and walnuts in China that threatens the apple industry in the Loess Plateau and Bohai Bay; it has developed resistance to many insecticides. Sterile insect technique (SIT) combined with area-wide integrated pest management (AW-IPM) can reduce the risk of resistance to insecticides and effectively control some insect pest species. Our previous laboratory experiment found that irradiation with 366 Gy of X-ray caused the males of the codling moth to become sterile. However, the sterility and adaptability of males after being irradiated with 366 Gy X-ray in the field are still unclear. In this study, we investigated the effect of X-ray irradiation on the fitness of male adults that emerged from pupae irradiated with 366 Gy to explore their adaptability and mating competitiveness, and to examine the effect of releasing sterile male insects in orchards in northeast China on the fruit infestation rate of the Nanguo pear. The results showed that 366 Gy of X-ray irradiation significantly reduced the mating competitiveness of males and the hatching rate of the eggs laid by females pairing with sterile males. Meanwhile, the lifespan of the sterile male moths was significantly shorter than that of the normal ones in the field. A pilot test showed that the release twice of sterile male moths in the orchards had no significant effect on the fruit infestation rate. Our field experiments provide a scientific basis for the further optimization of the SIT technology program for controlling C. pomonella.
RESUMEN
BACKGROUND: Natural enemies are important in pest control. However, control by natural enemies is hindered by the migration of rice planthoppers. Therefore, comigration and interactions between Laodelphax striatellus (Fallén) and Sogatella furcifera (Horváth) and five predator species, Chrysoperla sinica Tjeder, Harmonia axyridis (Pallas), Episyrphus balteatus, Syrphus corollae (Fab.) and Chrysopa pallens (Rambur) in eastern Asia were investigated. RESULTS: From 2012 to 2021, the migration patterns of two rice planthoppers and five natural enemy species were monitored by suction trapping on Beihuang Island, Shandong Province, China. Both planthoppers and the five natural enemies regularly comigrated from late April to late October each year. There were significant interannual and seasonal differences in the numbers of two rice planthoppers migrating across this island. Simulated seasonal migration trajectories indicated different source areas for the two rice planthoppers, which mainly originated in northeast, north and east China. The biomass of planthoppers was significantly positively correlated with that of the ladybug H. axyridis in all migration periods, and significant differences in the ratio of rice planthoppers to natural enemies among months. A time-lag effect between seasons was obtained when natural enemies and pests comigrated. CONCLUSION: Migration was coordinated between rice planthoppers and natural enemies in East Asia. When natural enemies and rice planthoppers comigrated, time lags between seasons were observed. The unique insights into the migration patterns will help to increase understanding of the occurrence of rice planthoppers in eastern Asia and provide an important theoretical basis for regional monitoring and management of rice planthoppers. © 2023 Society of Chemical Industry.
Asunto(s)
Hemípteros , Oryza , Animales , Asia Oriental , ChinaRESUMEN
c-Jun N-terminal kinase (JNK) phosphorylation is widely observed during virus infection, modulating various aspects of the virus-host interaction. In our previous research, we have proved that B. mori ferritin heavy-chain homolog (BmFerHCH), an inhibitor of reactive oxygen species (ROS), facilitates B. mori nucleopolyhedrovirus (BmNPV) proliferation. However, one question remains: Which downstream signaling pathways does BmFerHCH regulate by inhibiting ROS? Here, we first determined that silencing BmFerHCH inhibits BmNPV proliferation, and this inhibition depends on ROS. Then, we substantiated that BmNPV infection activates the JNK signaling pathway. Interestingly, the JNK phosphorylation during BmNPV infection is activated by ROS. Further, we found that the enhanced nuclear translocation of phospho-JNK induced by BmNPV infection was dramatically reduced by pretreatment with the antioxidant N-acetylcysteine (NAC), whereas there was more detectable phospho-JNK in the cytoplasm. Next, we investigated how changes in BmFerHCH expression affect JNK phosphorylation. BmFerHCH overexpression suppressed the phosphorylation of JNK and nuclear translocation of phospho-JNK during BmNPV infection, whereas BmFerHCH knockdown facilitated phosphorylation of JNK and nuclear translocation of phospho-JNK. By measuring the viral load, we found the inhibitory effect of BmFerHCH knockdown on BmNPV infection depends on phosphorylated JNK. In addition, the JNK signaling pathway was involved in BmNPV-triggered apoptosis. Hence, we hypothesize that ROS-mediated JNK phosphorylation is involved in the regulation of BmFerHCH on BmNPV proliferation. These results elucidate the molecular mechanisms and signaling pathways of BmFerHCH-mediated response to BmNPV infection.
Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Fosforilación , Nucleopoliedrovirus/fisiología , Especies Reactivas de Oxígeno/metabolismo , Apoferritinas/metabolismo , Sistema de Señalización de MAP Quinasas , Proliferación Celular , Bombyx/metabolismo , Proteínas de Insectos/metabolismoRESUMEN
Plant mitochondrial genomes (mitogenomes) are a valuable source of genetic information for a better understanding of phylogenetic relationships. However, no mitogenome of any species in the genus of Photinia has been reported. In this study, using NGS sequencing, we reported the mitogenome assembly and annotation of Photinia serratifolia, which is 473,579 bp in length, contains 38 protein-coding genes, 23 tRNAs, and 6 rRNAs, with 61 genes have no introns. The rps2 and rps11 genes are missing in the P. serratifolia mitogenome. Although there are more editing sites (488) in the P. serratifolia mitogenome than in most angiosperms, fewer editing types were found in the P. serratifolia mitogenome, showing a clear bias in RNA-editing. Phylogenetic analysis based on the mitogenomes of P. serratifolia and 8 other taxa of the Rosaceae family reflected the exact evolutionary and taxonomic status of P. serratifolia. However, Ka/Ks analysis revealed that 72.69% of the protein-coding genes in the P. serratifolia mitogenome had undergone negative selections, reflecting the importance of those genes in the P. serratifolia mitogenome. Collectively, these results will provide valuable information for the evolution of P. serratifolia and provide insight into the evolutionary relationships within Photinia and the Rosaceae family.
Asunto(s)
Genoma Mitocondrial , Photinia , Filogenia , Genoma Mitocondrial/genética , ARN de Transferencia/genética , ARN Ribosómico/genéticaRESUMEN
BACKGROUND: Ganoderma lucidum polysaccharide (GLP) has many biological properties, however, the anti-fibrosis effect of GLP is unknown at present. PURPOSE: This study aimed to examine the anti-fibrogenic effect of GLP and its underlying molecular mechanisms in vivo and in vitro. STUDY DESIGN: Both CCl4-induced mouse and TGF-ß1-induced HSC-T6 cellular models of fibrosis were established to examine the anti-fibrogenic effect of a water-soluble GLP (25 kDa) extracted from the sporoderm-removed spores of G. lucidum.. METHOD: Serum markers of liver injury, histology and fibrosis of liver tissues, and collagen formation were examined using an automatic biochemical analyzer, H&E staining, Sirius red staining, immunohistochemistry, immunofluorescence, ELISA, Western blotting, and qRT-PCR. RNA-sequencing, enrichment pathway analysis, Western blotting, qRT-PCR, and flow cytometry were employed to identify the potential molecular targets and signaling pathways that are responsible for the anti-fibrotic effect of GLP. RESULTS: We showed that GLP (150 and 300 mg/kg) significantly inhibited hepatic fibrogenesis and inflammation in CCl4-treated mice as mediated by the TLR4/NF-κB/MyD88 signaling pathway. We further demonstrated that GLP significantly inhibited hepatic stellate cell (HSCs) activation in mice and in TGF-ß1-induced HSC-T6 cells as manifested by reduced collagen I and a-SMA expressions. RNA-sequencing uncovered inflammation, apoptosis, cell cycle, ECM-receptor interaction, TLR4/NF-κB, and TGF-ß/Smad signalings as major pathways suppressed by GLP administration. Further studies demonstrated that GLP elicits anti-fibrotic actions that are associated with a novel dual effect on apoptosis in vivo (inhibit) or in vitro (promote), suppression of cell cycle in vivo, induction of S phase arrest in vitro, and attenuation of ECM-receptor interaction-associated molecule expressions including integrins ITGA6 and ITGA8. Furthermore, GLP significantly inhibited the TGF-ß/Smad signaling in mice, and reduced TGF-ß1 or its agonist SRI-011381-induced Smad2 and Smad3 phosphorylations, but increased Samd7 expression in HSC-T6 cells. CONCLUSION: This study provides the first evidence that GLP could be a promising dietary strategy for treating liver fibrosis, which protects against liver fibrosis and HSC activation through targeting inflammation, apoptosis, cell cycle, and ECM-receptor interactions that are mediated by TGF-ß/Smad signaling.
Asunto(s)
Reishi , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Smad/metabolismo , Células Estrelladas Hepáticas , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Colágeno Tipo I/metabolismo , Ciclo Celular , Inflamación/metabolismo , Apoptosis , ARN/metabolismoRESUMEN
AIMS: Our previous studies showed that the nonsteroidal anti-inflammatory drug-activated gene-1, or growth differentiation factor-15 (NAG-1/GDF15) inhibits obesity and diabetes in mice. The current study aimed to examine the role and molecular mechanisms of NAG-1/GDF15 in diabetic nephropathy (DN), which is largely unknown. MAIN METHODS: Both male and female wild-type (Wt) C57BL/6 mice and mice overexpressing human NAG-1/GDF15 (transgenic, Tg) were used, which were induced by high-fat diet (HFD)/streptozotocin (STZ) to establish the mouse model of DN. Transcriptome study was performed to identify the underlying molecular mechanisms of NAG-1/GDF15 against DN. In addition, human renal tubular epithelial cells (HK-2) were cultured with high glucose (HG) to establish a DN cellular model and were treated with NAG-1/GDF15 plasmid or the recombinant NAG-1/GDF15 protein for mechanism studies. KEY FINDINGS: Overexpression of NAG-1/GDF15 in Tg mice significantly alleviated HFD/STZ-induced typical symptoms of DN, improved lipid homeostasis, glucose intolerance, and insulin sensitivity. Histopathology of renal tissues revealed that NAG-1/GDF15 mice had significantly reduced renal injury, glycogen deposition, and renal fibrosis. Transcriptome study uncovered inflammation, cell adhesion, and the inflammation-related signaling pathways as major pathways suppressed in the NAG-1/GDF15 mice. Further studies demonstrated that NAG-1/GDF15 overexpression inhibited renal and systematic inflammation, inhibited the AGE/RAGE axis and its associated downstream inflammatory molecules and adhesion molecules, and inhibited the upregulation of TLR4/MyD88/NF-κB signaling pathway in mice. These results were further confirmed in HG-induced HK-2 cells. SIGNIFICANCE: NAG-1/GDF15 plays an important role in the inhibition of the development and progression of DN via targeting AGE/RAGE-mediated inflammation pathways.
Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Femenino , Humanos , Masculino , Ratones , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Inflamación/patología , Ratones Endogámicos C57BL , Transducción de Señal , Estreptozocina/farmacología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/metabolismoRESUMEN
Plant-derived polysaccharides have demonstrated promising anti-cancer effects via immune-regulatory activity. The aim of the current study was to compare the chemical property and the anticancer effects of polysaccharides extracted from the sporoderm-removed spores of the medicinal mushroom Ganoderma lucidum (RSGLP), which removed the sporoderm completely, with polysaccharides extracted from the sporoderm-broken spores of G. lucidum (BSGLP). We found that RSGLP has a higher extraction yield than BSGLP. HPGPC and GC-MS results revealed that both RSGLP and BSGLP are heteropolysaccharides, but RSGLP had a higher molecular weight and a different ratio of monosaccharide composition than BSGLP. MTT and flow cytometry results demonstrated that RSGLP exhibited much higher dose-efficacy in inhibiting cell viability and inducing apoptosis than BSGLP in 8 cancer cell lines representing colon (HCT116 and HT29), liver (HepG2 and Huh-7), breast (MDA-MB-231 and MCF-7), and lung cancers (NCI-H460 and A549). Furthermore, RSGLP is more effective in inhibiting HCT116 and NCI-H460 xenograft tumor growth and inhibiting tumor-induced splenomegaly than BSGLP in nude mice, suggesting a better effect on regulating immunity of RSGLP. Next, we found that RSGLP is more potent in inhibiting the level of serum inflammatory cytokines in nude mice, and in inhibiting the activation of macrophage RAW264.7 and the expression of the inflammatory mediators IL-1ß, TNF-α, iNOS, and COX-2 in vitro. This is the first study to compare the chemical properties, anti-cancer, and immune-regulatory effects of RSGLP and BSGLP using multiple cancer cell lines. Our results revealed that the sporoderm-removed spores of G. lucidum (RSGL) and RSGLP may serve as new anticancer agents for their promising immune-regulatory activity.
RESUMEN
Gut microbiota play an important role in digestion, development, nutritional metabolism, and detoxification in insects. However, scant information exists on the gut bacterial variation, composition, and community structure of the beet armyworm, Spodoptera exigua (Hübner), and how its gut microbiota has adapted to different geographical environments. Using 16S rRNA high-throughput sequencing technology, we detected 3,837,408 high-quality reads and 1,457 operational taxonomic units (OTUs) in 47 gut samples of S. exigua collected from ten sites in northern China. Overall, we identified 697 bacterial genera from 30 phyla, among which Proteobacteria and Firmicutes were the most dominant phyla. Gut bacterial alpha-diversity metrics revealed significant differences among these populations. We detected the highest alpha bacterial diversity in Xinming, northern Liaoning Province, and the lowest bacterial diversity in Zhangwu, western Liaoning Province. Beta diversity indicated that the gut microbial community structure of S. exigua in Liaoning Province was significantly different from that of other populations. There was a similar microbial community structure among populations in the adjacent province, suggesting that the environment influences bacterial succession in this pest. Finally, PICRUSt analysis demonstrated that microbial functions closely associated with the gut microbiomes mainly included membrane transport, carbohydrate metabolism and replication, and amino acid metabolism.
Asunto(s)
Microbioma Gastrointestinal , Cebollas , Animales , Bacterias/genética , China , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , SpodopteraRESUMEN
Radiation on aqueous solutions can induce water radiolysis with products of radicals, H2, H2O2, and so on, and their consequent biological effects have long been interested in radiation chemistry. Unlike the decomposition of water by electric current that produces a significant number of bubbles, the gas products from the radiolysis of water are normally invisible by bare eyes, little is known on whether nanosized bubbles can be produced and what their dynamics are upon irradiation. Here, we first presented the formation of nanoscale bulk bubbles by irradiating pure water with accelerated electrons and their concentration and size distribution changes with the dose and rate of irradiation. The nanoparticle tracking analysis showed that irradiation can actually produce a certain amount of bulk nanobubbles in pure water. They exhibited a dependence on the irradiation dose rates and irradiation doses. The results indicated that the concentration of formed bulk nanobubbles increased as the irradiation dose rates increased, but it will increase and then decrease with the increased irradiation doses. The formed bulk nanobubbles could maintain stability for several hours. Our findings will provide a new angle of view for the radiation chemistry of water, and the formed nanobubbles may help elucidate the biological effects of irradiated solutions.
Asunto(s)
Electrones , Peróxido de Hidrógeno , Agua/químicaRESUMEN
AIMS: Growth differentiation factor-15 (GDF15) plays complex and controversial roles in cancer. In this study, the prognostic value and the exact biological function of GDF15 in cerebral lower-grade gliomas (LGGs) and its potential molecular targets were examined. MAIN METHODS: Wilcoxon signed-rank test and logistic regression were applied to analyze associations between GDF15 expression and clinical characteristics using the Cancer Genome Atlas (TCGA) database. Overall survival was analyzed using Kaplan-Meier and Cox analyses. Gene set enrichment analysis (GSEA) and the hypoxia risk model was conducted to identify the potential molecular mechanisms underlying the effects of GDF15 on LGGs tumorigenesis. The biological function of GDF15 was examined using gain- and loss-of-function experiments, and a recombinant hGDF15 protein in LGG SW1783 cells in vitro. KEY FINDINGS: We found that higher GDF15 expression is associated with poor clinical features in LGG patients, and an independent risk factor for overall survival among LGG patients. GSEA results showed that the poor prognostic role of GDF15 in LGGs is related to hypoxia and glycolysis signatures, which was further validated using the hypoxia risk model. Furthermore, GDF15 overexpression facilitated cell proliferation, while GDF15 siRNA inhibits cell proliferation in LGG SW1783 cells. In addition, GDF15 was upregulated upon CoCl2 treatment which induces hypoxia, correlating with the upregulation of the expressions of HIF-1α and glycolysis-related key genes in SW1783 cells. SIGNIFICANCE: GDF15 may promote LGG tumorigenesis that is associated with the hypoxia and glycolysis pathways, and thus could serve as a promising molecular target for LGG prevention and therapy.