Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38690769

RESUMEN

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Asunto(s)
Adenosina/análogos & derivados , Antivirales , Catepsina A , Pulmón , Profármacos , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacocinética , Profármacos/farmacología , Animales , Ratones , Antivirales/farmacocinética , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Humanos , Catepsina A/metabolismo , Pulmón/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacología , Permeabilidad , ProTides
2.
Metabolism ; 155: 155909, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582490

RESUMEN

BACKGROUND: Krüppel-like factor 10 (KLF10), a zinc finger transcription factor, plays a pivotal role in modulating TGF-ß-mediated cellular processes such as growth, apoptosis, and differentiation. Recent studies have implicated KLF10 in regulating lipid metabolism and glucose homeostasis. This study aimed to elucidate the precise role of hepatic KLF10 in developing metabolic dysfunction-associated steatohepatitis (MASH) in diet-induced obese mice. METHODS: We investigated hepatic KLF10 expression under metabolic stress and the effects of overexpression or ablation of hepatic KLF10 on MASH development and lipidemia. We also determined whether hepatocyte nuclear factor 4α (HNF4α) mediated the metabolic effects of KLF10. RESULTS: Hepatic KLF10 was downregulated in MASH patients and genetically or diet-induced obese mice. AAV8-mediated overexpression of KLF10 in hepatocytes prevented Western diet-induced hypercholesterolemia and steatohepatitis, whereas inactivation of hepatocyte KLF10 aggravated Western diet-induced steatohepatitis. Mechanistically, KLF10 reduced hepatic triglyceride and free fatty acid levels by inducing lipolysis and fatty acid oxidation and inhibiting lipogenesis, and reducing hepatic cholesterol levels by promoting bile acid synthesis. KLF10 highly induced HNF4α expression by directly binding to its promoter. The beneficial effect of KLF10 on MASH development was abolished in mice lacking hepatocyte HNF4α. In addition, the inactivation of KLF10 in hepatic stellate cells exacerbated Western diet-induced liver fibrosis by activating the TGF-ß/SMAD2/3 pathway. CONCLUSIONS: Our data collectively suggest that the transcription factor KLF10 plays a hepatoprotective role in MASH development by inducing HNF4α. Targeting hepatic KLF10 may offer a promising strategy for treating MASH.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz , Hígado Graso , Factor Nuclear 4 del Hepatocito , Factores de Transcripción de Tipo Kruppel , Animales , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Humanos , Masculino , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Hígado Graso/metabolismo , Hígado Graso/etiología , Ratones Endogámicos C57BL , Metabolismo de los Lípidos , Hígado/metabolismo , Hepatocitos/metabolismo , Ratones Noqueados
3.
J Lipid Res ; 65(4): 100527, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447926

RESUMEN

Forkhead transcription factor 3 (FOXA3) has been shown to regulate metabolism and development. Hepatic FOXA3 is reduced in obesity and fatty liver disease. However, the role of hepatic FOXA3 in regulating obesity or steatohepatitis remains to be investigated. In this work, C57BL/6 mice were i.v. injected with AAV8-ALB-FOXA3 or the control virus. The mice were then fed a chow or Western diet for 16 weeks. The role of hepatic FOXA3 in energy metabolism and steatohepatitis was investigated. Plasma bile acid composition and the role of Takeda G protein-coupled receptor 5 (TGR5) in mediating the metabolic effects of FOXA3 were determined. Overexpression of hepatic FOXA3 reduced hepatic steatosis in chow-fed mice and attenuated Western diet-induced obesity and steatohepatitis. FOXA3 induced lipolysis and inhibited hepatic genes involved in bile acid uptake, resulting in elevated plasma bile acids. The beneficial effects of hepatic FOXA3 overexpression on Western diet-induced obesity and steatohepatitis were abolished in Tgr5-/- mice. Our data demonstrate that overexpression of hepatic FOXA3 prevents Western diet-induced obesity and steatohepatitis via activation of TGR5.


Asunto(s)
Dieta Occidental , Factor Nuclear 3-gamma del Hepatocito , Hígado , Ratones Endogámicos C57BL , Obesidad , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Ratones , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/genética , Hígado/metabolismo , Dieta Occidental/efectos adversos , Masculino , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/etiología , Ácidos y Sales Biliares/metabolismo
4.
Food Chem ; 447: 138981, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38518613

RESUMEN

In the current study, the preservation effect of plasma-activated water (PAW), coconut exocarp flavonoids (CF) and their combination on golden pompano fillets during refrigerated storage was investigated with emphasize on the treating sequence. PAW effectively inactivated spoilage bacteria and inhibited total volatile basic nitrogen (TVB-N) increase, while boosted the TBARS and carbonyl values. PAW+CF exerted synergistic effect on extending the period before total bacterial count and TVB-N content reaching acceptance limit than PAW or CF alone (P < 0.05). In addition, their combined treatment effectively reduced fillets discoloration and texture deterioration. Simultaneously, lipid and protein oxidation were significantly inhibited, which was comparable to CF. It was indicated that the treatment sequence of PAW and CF profoundly impact the preservation effect. Specifically, prior CF marinating followed by PAW was more effective than the opposite sequence. Thus, combination of CF followed by PAW served as promising technique for fish fillets preservation.


Asunto(s)
Cocos , Conservación de Alimentos , Animales , Conservación de Alimentos/métodos , Agua , Peces
5.
Hepatology ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537130

RESUMEN

BACKGROUND AND AIMS: Tumor microenvironment (TME) heterogeneity leads to a discrepancy in survival prognosis and clinical treatment response for patients with HCC. The clinical applications of documented molecular subtypes are constrained by several issues. APPROACH AND RESULTS: We integrated 3 single-cell data sets to describe the TME landscape and identified 6 prognosis-related cell subclusters. Unsupervised clustering of subcluster-specific markers was performed to generate transcriptomic subtypes. The predictive value of these molecular subtypes for prognosis and treatment response was explored in multiple external HCC cohorts and the Xiangya HCC cohort. TME features were estimated using single-cell immune repertoire sequencing, mass cytometry, and multiplex immunofluorescence. The prognosis-related score was constructed based on a machine-learning algorithm. Comprehensive single-cell analysis described TME heterogeneity in HCC. The 5 transcriptomic subtypes possessed different clinical prognoses, stemness characteristics, immune landscapes, and therapeutic responses. Class 1 exhibited an inflamed phenotype with better clinical outcomes, while classes 2 and 4 were characterized by a lack of T-cell infiltration. Classes 5 and 3 indicated an inhibitory tumor immune microenvironment. Analysis of multiple therapeutic cohorts suggested that classes 5 and 3 were sensitive to immune checkpoint blockade and targeted therapy, whereas classes 1 and 2 were more responsive to transcatheter arterial chemoembolization treatment. Class 4 displayed resistance to all conventional HCC therapies. Four potential therapeutic agents and 4 targets were further identified for high prognosis-related score patients with HCC. CONCLUSIONS: Our study generated a clinically valid molecular classification to guide precision medicine in patients with HCC.

6.
Cell Mol Gastroenterol Hepatol ; 18(1): 71-87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38417701

RESUMEN

BACKGROUND & AIMS: Excessive alcohol consumption can lead to alcohol-associated liver disease, a spectrum of conditions ranging from steatosis to fibrosis and cirrhosis. Bile acids regulate metabolic pathways by binding to cellular and nuclear receptors, and they also interact with the gut microbiome to control microbial overgrowth. Fibroblast growth factor 19 (FGF-19) is an ileum-derived hormone induced and released in response to bile acid activation of the nuclear receptor farnesoid X receptor. FGF-19 signaling is dysregulated with ethanol consumption and is increased in patients with alcoholic hepatitis. Here, we examined the effects of FGF-19 in a mouse model of chronic + binge ethanol feeding. METHODS: After injection of adeno-associated virus-green fluorescent protein or AAV-FGF-19, female C57BL/6J mice were pair-fed a Lieber DeCarli liquid diet (5% v/v) or control diet for 10 days and were given a bolus gavage of 5% ethanol or maltose control to represent a binge drinking episode. Tissues were collected for analysis 9 hours after the binge. RESULTS: Chronic + binge ethanol feeding induced steatosis regardless of FGF-19 expression. Interestingly, FGF-19 and ethanol resulted in significantly increased liver inflammation, as measured by Il6, Tgfß, and Tnfα, compared with ethanol alone. Both ethanol and FGF-19 decreased bile acid synthesis, and FGF-19 significantly reduced secondary bile acids, leading to overgrowth of specific pathogenic bacteria including Enterococcus faecalis, Escherichia coli, and Clostridium perfringens. CONCLUSIONS: Dysregulation of FGF-19 and consequent changes in bile acid synthesis and composition during alcohol consumption may be a contributing factor to alcohol-induced liver disease and dysbiosis.


Asunto(s)
Ácidos y Sales Biliares , Modelos Animales de Enfermedad , Disbiosis , Etanol , Factores de Crecimiento de Fibroblastos , Hepatopatías Alcohólicas , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Ácidos y Sales Biliares/metabolismo , Disbiosis/microbiología , Disbiosis/patología , Disbiosis/inducido químicamente , Ratones , Femenino , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/microbiología , Hepatopatías Alcohólicas/etiología , Etanol/efectos adversos , Etanol/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Consumo Excesivo de Bebidas Alcohólicas/patología , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Humanos
7.
Front Biosci (Landmark Ed) ; 29(2): 63, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38420816

RESUMEN

BACKGROUND: Largemouth bass (Micropterus Salmoides) is an economically important fish species in China. Most research has focused on its growth, disease resistance, and nutrition improvement. However, the sex-determining genes in largemouth bass are still unclear. The transforming growth factor-beta (TGF-ß) gene family, including amh, amhr2 and gsdf, plays an important role in the sex determination and differentiation of various fishes. These genes are potentially involved in sex determination in largemouth bass. METHODS: We performed a systematic analysis of 5 sex-related genes (amh, amhr2, gsdf, cyp19a1, foxl2) in largemouth bass using sequence alignment, collinearity analysis, transcriptome, and quantitative real-time polymerase chain reaction (qRT-PCR). This included a detailed assessment of their sequences, gene structures, evolutionary traits, and gene transcription patterns in various tissues including gonads, and at different developmental stages. RESULTS: Comparative genomics revealed that the 5 sex-related genes were highly conserved in various fish genomes. These genes did not replicate, mutate or lose in largemouth bass. However, some were duplicated (amh, amhr2 and gsdf), mutated (gsdf) or lost (amhr2) in other fishes. Some genes (e.g., gsdf) showed significant differences in genomic sequence between males and females, which may contribute to sex determination and sex differentiation in these fishes. qRT-PCR was applied to quantify transcription profiling of the 5 genes during gonadal development and in the adult largemouth bass. Interestingly, amh, amhr2 and gsdf were predominantly expressed in the testis, while cyp19a1 and foxl2 were mainly transcribed in the ovary. All 5 sex-related genes were differentially expressed in the testes and ovaries from the 56th day post-fertilization (dpf). We therefore speculate that male/female differentiation in the largemouth bass may begin at this critical time-point. Examination of the transcriptome data also allowed us to screen out several more sex-related candidate genes. CONCLUSIONS: Our results provide a valuable genetic resource for investigating the physiological functions of these 5 sex-related genes in sex determination and gonadal differentiation, as well as in the control of gonad stability in adult largemouth bass.


Asunto(s)
Lubina , Animales , Femenino , Masculino , Lubina/genética , Alineación de Secuencia , Testículo , Ovario , Transcriptoma
8.
Biomed J ; 47(1): 100605, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37179010

RESUMEN

BACKGROUND: Curcumin ameliorates bone loss by inhibiting osteoclastogenesis. Curcumin inhibits RANKL-promoted autophagy in osteoclast precursors (OCPs), which mediates its anti-osteoclastogenic effect. But the role of RANKL signaling in curcumin-regulated OCP autophagy is unknown. This study aimed to explore the relationship between curcumin, RANKL signaling, and OCP autophagy during osteoclastogenesis. METHODS: We investigated the role of curcumin in RANKL-related molecular signaling in OCPs, and identified the significance of RANK-TRAF6 signaling in curcumin-treated osteoclastogenesis and OCP autophagy using flow sorting and lentiviral transduction. Tg-hRANKL mice were used to observe the in vivo effects of curcumin on RANKL-regulated bone loss, osteoclastogenesis, and OCP autophagy. The significance of JNK-BCL2-Beclin1 pathway in curcumin-regulated OCP autophagy with RANKL was explored via rescue assays and BCL2 phosphorylation detection. RESULTS: Curcumin inhibited RANKL-related molecular signaling in OCPs, and repressed osteoclast differentiation and autophagy in sorted RANK+ OCPs but did not affect those of RANK- OCPs. Curcumin-inhibited osteoclast differentiation and OCP autophagy were recovered by TRAF6 overexpression. But curcumin lost these effects under TRAF6 knockdown. Furthermore, curcumin prevented the decrease in bone mass and the increase in trabecular osteoclast formation and autophagy in RANK+ OCPs in Tg-hRANKL mice. Additionally, curcumin-inhibited OCP autophagy with RANKL was reversed by JNK activator anisomycin and TAT-Beclin1 overexpressing Beclin1. Curcumin inhibited BCL2 phosphorylation at Ser70 and enhanced protein interaction between BCL2 and Beclin1 in OCPs. CONCLUSIONS: Curcumin suppresses RANKL-promoted OCP autophagy by inhibiting signaling pathway downstream of RANKL, contributing to its anti-osteoclastogenic effect. Moreover, JNK-BCL2-Beclin1 pathway plays an important role in curcumin-regulated OCP autophagy.


Asunto(s)
Curcumina , Osteoclastos , Animales , Ratones , Autofagia , Beclina-1/metabolismo , Diferenciación Celular , Curcumina/farmacología , Curcumina/metabolismo , Osteogénesis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo
9.
Drug Metab Dispos ; 52(2): 143-152, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38050015

RESUMEN

Cytochrome P450 2D6 (CYP2D6) is a critical hepatic drug-metabolizing enzyme in humans, responsible for metabolizing approximately 20%-25% of commonly used medications such as codeine, desipramine, fluvoxamine, paroxetine, and tamoxifen. The CYP2D6 gene is highly polymorphic, resulting in substantial interindividual variability in its catalytic function and the pharmacokinetics and therapeutic outcomes of its substrate drugs. Although many functional CYP2D6 variants have been discovered and validated, a significant portion of the variability in the expression and activity of CYP2D6 remains unexplained. In this study, we performed a genome-wide association study (GWAS) to identify novel variants associated with CYP2D6 protein expression in individual human livers, followed by a conditional analysis to control for the effect of functional CYP2D6 star alleles. We also examined their impact on hepatic CYP2D6 activity. Genotyping on a genome-wide scale was achieved using the Illumina Multi-Ethnic Genotyping Array (MEGA). A data-independent acquisition (DIA)-based proteomics method was used to quantify CYP2D6 protein concentrations. CYP2D6 activity was determined by measuring the dextromethorphan O-demethylation in individual human liver s9 fractions. The GWAS identified 44 single nuclear polymorphisms (SNPs) that are significantly associated with CYP2D6 protein expressions with a P value threshold of 5.0 × 10-7 After the conditional analysis, five SNPs, including the cis-variants rs1807493 and rs1062753 and the trans-variants rs4073010, rs729559, and rs80274432, emerged as independent variants significantly correlated with hepatic CYP2D6 protein expressions. Notably, four of these SNPs, except for rs80274432, also exhibited a significant association with CYP2D6 activities in human livers, suggesting their potential as novel and independent cis- and trans-variants regulating CYP2D6. SIGNIFICANT STATEMENT: Using individual human livers, we identified four novel cis- and trans-pQTLs/aQTLs (protein quantitative trait loci/activity quantitative trait loci) of Cytochrome P450 2D6 (CYP2D6) that are independent from known functional CYP2D6 star alleles. This study connects the CYP2D6 gene expression and activity, enhancing our understanding of the genetic variants associated with CYP2D6 protein expression and activity, potentially advancing our insight into the interindividual variability in CYP2D6 substrate medication response.


Asunto(s)
Citocromo P-450 CYP2D6 , Estudio de Asociación del Genoma Completo , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Fluvoxamina , Hígado/metabolismo , Paroxetina
10.
Nat Chem Biol ; 20(4): 484-492, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37945893

RESUMEN

GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14-GPR101-Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101-deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential.


Asunto(s)
Receptores Acoplados a Proteínas G , Ratones , Animales , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/metabolismo , Ligandos
11.
Pharmacotherapy ; 44(1): 22-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37574548

RESUMEN

STUDY OBJECTIVE: Neonatal opioid withdrawal syndrome (NOWS) is a condition that often occurs in neonates born to mothers who received methadone treatment for opioid use disorder during pregnancy. Early identification and treatment of infants at risk of NOWS may improve clinical outcomes. The purpose of this study was to evaluate whether maternal and umbilical cord plasma concentrations of methadone and its metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), could predict the need for NOWS treatment. DESIGN: Single-center prospective study. SETTING: University of Michigan Neonatal Intensive Care Unit. PATIENTS: The study included 11 opioid-dependent mother-infant dyads, where the mothers were treated with methadone at 34 weeks' gestation or later. INTERVENTION: Maternal and cord blood samples were collected from the study participants. MEASUREMENTS AND MAIN RESULTS: Maternal and cord plasma concentrations of methadone and EDDP were determined. Six out of the 11 infants required treatment for NOWS. Maternal methadone plasma concentrations were comparable between infants requiring and not requiring NOWS treatment (329.1 ± 229.7 ng/mL vs. 413.2 ± 329.8 ng/mL). However, the average cord plasma methadone concentration in infants who did not require NOWS treatment was 2.9-fold higher than in those who required the treatment (120.0 ± 88.6 ng/mL vs. 40.9 ± 24.4 ng/mL), although the difference was not statistically significant. The ratios of maternal-to-cord methadone plasma concentrations were significantly higher in patients who required treatment for NOWS compared with those who did not (7.7 ± 1.9 vs. 3.5 ± 1.6, p = 0.003). Maternal and cord plasma EDDP concentrations and the maternal-to-cord plasma EDDP concentration ratios did not differ between patients who required and did not require treatment for NOWS. CONCLUSIONS: The results suggest that methadone permeability across the blood-placental barrier may affect in utero exposure to methadone, and the maternal-to-cord methadone plasma concentration ratio could be a potential biomarker for predicting the need for NOWS treatment.


Asunto(s)
Síndrome de Abstinencia Neonatal , Trastornos Relacionados con Opioides , Complicaciones del Embarazo , Recién Nacido , Lactante , Embarazo , Humanos , Femenino , Metadona/efectos adversos , Analgésicos Opioides/efectos adversos , Estudios Prospectivos , Placenta/metabolismo , Complicaciones del Embarazo/tratamiento farmacológico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Síndrome de Abstinencia Neonatal/tratamiento farmacológico
12.
Biomolecules ; 13(12)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38136552

RESUMEN

WRKY transcription factors are one of the largest families of transcription regulators that play essential roles in regulating the synthesis of secondary metabolites in plants. Jasmine (Jasminum sambac), renowned for its aromatic nature and fragrant blossoms, possesses a significant abundance of volatile terpene compounds. However, the role of the WRKY family in terpene synthesis in jasmine remains undetermined. In this study, 72 WRKY family genes of J. sambac were identified with their conserved WRKY domains and were categorized into three main groups based on their structural and phylogenetic characteristics. The extensive segmental duplications contributed to the expansion of the WRKY gene family. Expression profiles derived from the transcriptome data and qRT-PCR analysis showed that the majority of JsWRKY genes were significantly upregulated in fully bloomed flowers compared to buds. Furthermore, multiple correlation analyses revealed that the expression patterns of JsWRKYs (JsWRKY27/33/45/51/55/57) were correlated with both distinct terpene compounds (monoterpenes and sesquiterpenes). Notably, the majority of jasmine terpene synthase (JsTPS) genes related to terpene synthesis and containing W-box elements exhibited a significant correlation with JsWRKYs, particularly with JsWRKY51, displaying a strong positive correlation. A subcellular localization analysis showed that JsWRKY51 was localized in the nucleus. Moreover, transgenic tobacco leaves and jasmine calli experiments demonstrated that overexpression of JsWRKY51 was a key factor in enhancing the accumulation of ß-ocimene, which is an important aromatic terpene component. Collectively, our findings suggest the roles of JsWRKY51 and other JsWRKYs in regulating the synthesis of aromatic compounds in J. sambac, providing a foundation for the potential utilization of JsWRKYs to facilitate the breeding of fragrant plant varieties with an improved aroma.


Asunto(s)
Jasminum , Perfumes , Jasminum/química , Jasminum/genética , Jasminum/metabolismo , Odorantes/análisis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Fitomejoramiento , Terpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
J Lipid Res ; 64(12): 100469, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922990

RESUMEN

Deletion of the nuclear hormone receptor small heterodimer partner (Shp) ameliorates the development of obesity and nonalcoholic steatohepatitis (NASH) in mice. Liver-specific SHP plays a significant role in this amelioration. The gut microbiota has been associated with these metabolic disorders, and the interplay between bile acids (BAs) and gut microbiota contributes to various metabolic disorders. Since hepatic SHP is recognized as a critical regulator in BA synthesis, we assessed the involvement of gut microbiota in the antiobesity and anti-NASH phenotype of Shp-/- mice. Shp deletion significantly altered the levels of a few conjugated BAs. Sequencing the 16S rRNA gene in fecal samples collected from separately housed mice revealed apparent dysbiosis in Shp-/- mice. Cohousing Shp-/- mice with WT mice during a Western diet regimen impaired their metabolic improvement and effectively disrupted their distinctive microbiome structure, which became indistinguishable from that of WT mice. While the Western diet challenge significantly increased lipopolysaccharide and phenylacetic acid (PAA) levels in the blood of WT mice, their levels were not increased in Shp-/- mice. PAA was strongly associated with hepatic peroxisome proliferator-activated receptor gamma isoform 2 (Pparg2) activation in mice, which may represent the basis of the molecular mechanism underlying the association of gut bacteria and hepatic steatosis. Shp deletion reshapes the gut microbiota possibly by altering BAs. While lipopolysaccharide and PAA are the major driving forces derived from gut microbiota for NASH development, Shp deletion decreases these signaling molecules via dysbiosis, thereby partially protecting mice from diet-induced metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Disbiosis/genética , Disbiosis/metabolismo , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , ARN Ribosómico 16S/metabolismo
14.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(11): 1347-1352, 2023 Nov 15.
Artículo en Chino | MEDLINE | ID: mdl-37987043

RESUMEN

Objective: To explore the effectiveness of the percutaneous parallel screw fixation via the posterolateral "safe zone" for Hawkins type Ⅰ-Ⅲ talar neck fractures. Methods: A retrospective analysis was conducted on the clinical data from 35 patients who met the selection criteria of talar neck fractures between January 2019 and June 2021. According to the surgical method, they were divided into a study group (14 cases, using percutaneous posterolateral "safe zone" parallel screw fixation) and a control group (21 cases, using traditional open reduction and anterior cross screw internal fixation). There was no significant difference in gender, age, affected side, Hawkins classification, and time from injury to operation between the two groups ( P>0.05). The operation time, bone healing time, complications, and Hawkins sign were recorded, and the improvement of pain and ankle-foot function were evaluated by visual analogue scale (VAS) score and American Orthopaedic Foot and Ankle Society (AOFAS) ankle and hindfoot score at last follow-up. The overall quality of life was assessed by the short form of 12-item health survey (SF-12), which was divided into physical and psychological scores; and the satisfaction of patients was evaluated by the 5-point Likert scale. Results: The operation time in the study group was significantly shorter than that in the control group ( P<0.05). All patients werefollowed up 13-35 months, with an average of 20.6 months; there was no significant difference in the follow-up time between the two groups ( P>0.05). The time of bone healing in the study group was shorter than that in the control group, and the positive rate of Hawkins sign (83.33%) was higher than that in the control group (33.33%), and the differences were significant ( P<0.05). In the control group, there were 2 cases of incision delayed healing, 7 cases of avascular necrosis of bone, 3 cases of joint degeneration, 1 case of bone nonunion, and 3 cases of internal fixation irritation; while in the study group, there were only 2 cases of joint degeneration, and there was a significant difference in the incidence of complications between the two groups ( P<0.05). At last follow-up, there was no significant difference in VAS score between the two groups ( P>0.05), but the SF-12 physical and psychological scores, AOFAS ankle and hindfoot scores, and patients' satisfaction in the study group were significantly better than those in the control group ( P<0.05). Conclusion: The treatment of Hawkins type Ⅰ-Ⅲ talar neck fractures with percutaneous parallel screw fixation via the posterolateral "safe zone" can achieve better effectiveness than traditional open surgery, with the advantages of less trauma, fewer complications, faster recovery, and higher patient satisfaction.


Asunto(s)
Fracturas Óseas , Luxaciones Articulares , Humanos , Estudios Retrospectivos , Calidad de Vida , Fracturas Óseas/cirugía , Fijación Interna de Fracturas/métodos , Tornillos Óseos , Resultado del Tratamiento
15.
Appl Opt ; 62(14): 3519-3527, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37706964

RESUMEN

A switchable and tunable dual-function absorber/polarization converter is presented in this work. The constitution of the structure, which incorporates patterned graphene and photosensitive silicon (Si), can minimize undesired optical losses. Simulated results show that when the Si is metallic, the structure behaves as a broadband absorption of more than 90% in the range of 1.45-3.36 THz. Its peak absorption can be tuned from 22% to 99.8% by changing the Fermi energy of graphene. Furthermore, the interference theory analyzes the physical mechanism for broadband absorption. When the Si is in the dielectric state, the structure has a transmission polarization conversion function, which realizes the conversion from linear to cross-polarized waves. The polarization conversion ratio (PCR) is greater than 90% in the 3.82-4.43 THz range. Meanwhile, the cross-polarization transmission can be dynamically tuned from 28% to 97%, and the PCR can also be tuned from 17% to 99.9% by adjusting the conductivity of the Si. The reason for realizing polarization conversion is explained by the polarization decomposition method. This study provides a design opinion of high-performance multifunctional tunable terahertz devices.

16.
Ann Clin Lab Sci ; 53(4): 619-629, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37625837

RESUMEN

OBJECTIVE: To investigate the role of the lncRNA MEG3 (MEG3) in opposing the biochemical processes thought to be involved in the development of atherosclerosis (AS). METHODS: Thirty patients with AS and thirty healthy control subjects were enrolled in this study. The expression of MEG3, miR-200b-3p and ABCA1 was analyzed by RT-qPCR in the individuals and the macrophages-derived foam cells. Lipid accumulation was detected by oil red O staining. Cholesterol efflux was measured by ELISA assay in the foam cells. Expression of miR-200b-3p was identified by sequencing. Targeting relationships were determined by dual luciferase assay between MEG3 and miR-200b-3p, miR-200b-3p and ABCA1. RESULTS: In the patients with AS, MEG3 and ABCA1 expression were decreased and miR-200b-3p expression was upregulated. Foam cells transfected with an expression vector (pcDNA3.1) containing MEG3 (pcDNA3.1-MEG3) induced decrease of lipid accumulation and increase of cholesterol efflux compared to cells transfected with control plasmid alone. Foam cells transfected by pcDNA3.1-MEG3 also showed decreased miR-200b-3p and increased ABCA1 expression. Interestingly, co-expression of miR-200b-3p partially prevented these effects of MEG3 expression. CONCLUSION: Expression of MEG3 is downregulated in the patients with AS and foam cells. Overexpressed MEG3 may act as an anti-atherosclerotic factor by reducing lipid accumulation and accelerating cholesterol efflux through the miR-200b-3p/ABCA1 axis.


Asunto(s)
Aterosclerosis , MicroARNs , Humanos , Aterosclerosis/genética , Bioensayo , Colesterol , Lípidos , MicroARNs/genética
17.
Cell Death Discov ; 9(1): 287, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542040

RESUMEN

The second most common male cancer is prostate cancer (PCa), which has a high tendency for bone metastasis. Long non-coding RNAs, including TMPO-AS1, play a crucial role in PCa progression. However, TMPO-AS1's function in PCa bone metastasis (BM) and its underlying molecular mechanisms are unclear. Herein, we found that the long transcript of TMPO-AS1 (TMPO-AS1L) was upregulated in PCa tissues with bone metastasis, and overexpression of TMPO-AS1L correlated with advanced clinicopathological features and reduced BM-free survival in patients with PCa. Upregulated TMPO-AS1L promoted, whereas downregulated TMPO-AS1L inhibited, the PCa cell bone metastatic capacity in vitro and in vivo. Mechanistically, TMPO-AS1L was demonstrated to act as a scaffold, that strengthened the interaction of casein kinase 2 alpha 1 (CSNK2A1) and DEAD-box helicase 3 X-linked (DDX3X), and activated the Wnt/ß-catenin signaling pathway, thus promoting BM of PCa. Moreover, upregulation of TMPO-AS1L in PCa resulted from transcription elongation modulated by general transcription factor IIF subunit 2 (GTF2F2). Collectively, our study provides critical insights into the role of TMPO-AS1L in PCa BM via Wnt/ß-catenin signaling, identifying TMPO-AS1L as a candidate marker of PCa bone metastasis prognosis and therapeutic target.

18.
BMC Oral Health ; 23(1): 508, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479973

RESUMEN

BACKGROUND: Whether slim the face or not after removed third molars is the concern of some orthodontic treatment candidates. The aim of this article is to explore the volume changes of facial soft and hard tissues after third molars extraction, as well as develop a reproducible clinical protocol to precisely assess facial soft tissue volume change. METHODS: A non-randomized, non-blind, self-controlled pilot study was conducted. 24 adults aged 18-30 had ipsilateral third molars extracted. The body weight change was controlled within 2 kg. Structured light scans were taken under a standardized procedure pre-extraction (T0), three (T1), and six (T2) months post-extraction; CBCTs were taken at T0 and T2. The projection method was proposed to measure the soft tissue volume (STV) and the soft tissue volume change (STVC) by the Geomagic software. The hard tissue volume change (HTVC) was measured in the Dragonfly software. RESULTS: The final sample size is 23, including 5 males (age 26.6 ± 2.5 years) and 18 females (age 27.3 ± 2.5 years). The HTVC was - 2.33 ± 0.46ml on the extraction side. On the extraction side, the STV decreased by 1.396 (95% CI: 0.323-2.470) ml (P < 0.05) at T1, and increased by 1.753 (95% CI: -0.01-3.507) ml (P = 0.05) at T2. T2 and T0 had no difference (P > 0.05). The inter and intra-raters ICC of the projection method was 0.959 and 0.974. There was no correlation between the STVC and HTVC (P > 0.05). CONCLUSIONS: After ipsilateral wisdom teeth extraction, the volume of hard tissue on the extraction side reduces, and the volume of facial soft tissue does not change evidently. However, further research with large sample size is still needed. The STV measurement has excellent repeatability. It can be extended to other interested areas, including forehead, nose, paranasal, upper lip, lower lip and chin, which is meaningful in the field of orthodontics and orthopedics. TRIAL REGISTRATION: ChiCTR, ChiCTR1800018305 (11/09/2018), http://www.chictr.org.cn/showproj.aspx?proj=28868 .


Asunto(s)
Atención Odontológica , Femenino , Humanos , Masculino , Mentón , Labio , Proyectos Piloto , Adulto
19.
Pharm Res ; 40(11): 2525-2531, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37430149

RESUMEN

INTRODUCTION: Polymorphisms in the Thiopurine S-Methyltransferase (TPMT) gene are associated with decreased TPMT activity, but little is known about their impact on TPMT protein expression in the liver. This project is to conduct a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with altered TPMT protein expression in human livers and to determine if demographics affect hepatic TPMT protein expression. METHODS: Human liver samples (n = 287) were genotyped using a whole genome genotyping panel and quantified for TPMT protein expression using a Data-Independent Acquisition proteomics approach. RESULTS AND DISCUSSION: Thirty-one SNPs were found to be associated with differential expression of TPMT protein in the human livers. Subsequent analysis, conditioning on rs1142345, a SNP associated with the TPMT*3A and TPMT*3C alleles, showed no additional independent signals. Mean TPMT expression is significantly higher in wildtype donors compared to those carrying the known TPMT alleles, including TPMT*3A, TPMT*3C, and TPMT*24 (0.107 ± 0.028 vs. 0.052 ± 0.014 pmol/mg total protein, P = 2.2 × 10-16). After removing samples carrying the known TPMT variants, European ancestry donors exhibited significantly higher expression than African ancestry donors (0.109 ± 0.026 vs. 0.090 ± 0.041 pmol/mg total protein, P = 0.020). CONCLUSION: The GWAS identified 31 SNPs associated with TPMT protein expression in human livers. Hepatic TPMT protein expression was significantly lower in subjects carrying the TPMT*3A, TPMT*3C, and TPMT*24 alleles compared to non-carriers. European ancestry was associated with significantly higher hepatic TPMT protein expression than African ancestry, independent of known TPMT variants.


Asunto(s)
Estudio de Asociación del Genoma Completo , Metiltransferasas , Humanos , Factores Raciales , Metiltransferasas/genética , Genotipo , Polimorfismo de Nucleótido Simple , Hígado
20.
Biol Proced Online ; 25(1): 16, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37268895

RESUMEN

BACKGROUND: Immunotherapy is effective only in limited patients. It is urgent to discover a novel biomarker to predict immune cells infiltration status and immunotherapy response of different cancers. CLSPN has been reported to play a pivotal role in various biological processes. However, a comprehensive analysis of CLSPN in cancers has not been conducted. METHODS: To show the whole picture of CLSPN in cancers, a pan-cancer analysis was conducted in 9125 tumor samples across 33 cancer types by integrating transcriptomic, epigenomic and pharmacogenomics data. Moreover, the role of CLSPN in cancer was validated by CCK-8, EDU, colony formation and flow cytometry in vitro and tumor cell derived xenograft model in vivo. RESULTS: CLSPN expression was generally upregulated in most cancer types and was significantly associated with prognosis in different tumor samples. Moreover, elevated CLSPN expression was closely correlated with immune cells infiltration, TMB (tumor mutational burden), MSI (microsatellite instability), MMR (mismatch repair), DNA methylation and stemness score across 33 cancer types. Enrichment analysis of functional genes revealed that CLSPN participated in the regulation of numerous signaling pathways involved in cell cycle and inflammatory response. The expression of CLSPN in LUAD patients were further analyzed at the single-cell level. Knockdown CLSPN significantly inhibited cancer cell proliferation and cell cycle related cyclin-dependent kinase (CDK) family and Cyclin family expression in LUAD (lung adenocarcinoma) both in vitro and in vivo experiments. Finally, we conducted structure-based virtual screening by modelling the structure of CHK1 kinase domain and Claspin phosphopeptide complex. The top five hit compounds were screened and validated by molecular docking and Connectivity Map (CMap) analysis. CONCLUSION: Our multi-omics analysis offers a systematic understanding of the roles of CLSPN in pan-cancer and provides a potential target for future cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA