Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuro Oncol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721826

RESUMEN

BACKGROUND: The high fatality rate of glioblastoma (GBM) is attributed to glioblastoma stem cells (GSCs), which exhibit heterogeneity and therapeutic resistance. Metabolic plasticity of mitochondria is the hallmark of GSCs. Targeting mitochondrial biogenesis of GSCs is crucial for improving clinical prognosis in GBM patients. METHODS: SMYD2-induced PGC1α methylation and followed nuclear export is confirmed by co-immunoprecipitation, cellular fractionation, and immunofluorescence. The effects of SMYD2/PGC1α/CRM1 axis on GSCs mitochondrial biogenesis is validated by OCR, ECAR and intracranial glioma model. RESULTS: PGC1α methylation causes disabled mitochondrial function to maintain the stemness, thereby enhancing radio-resistance of GSCs. SMYD2 drives PGC1α K224 methylation (K224me), which is essential for promoting the stem-like characteristics of GSCs. PGC1α K224me is preferred binding with CRM1, accelerating PGC1α nuclear export and subsequent dysfunction. Targeting PGC1α methylation exhibits significant radiotherapeutic efficacy and prolongs patient survival. CONCLUSIONS: These findings unveil a novel regulatory pathway involving mitochondria that governs stemness in GSCs, thereby emphasizing promising therapeutic strategies targeting PGC1α and mitochondria for the treatment of GBM.

2.
Cell Death Differ ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594444

RESUMEN

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.

3.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507470

RESUMEN

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Hierro/metabolismo , Glioma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Células Madre Neoplásicas/patología , Azufre/metabolismo , Azufre/uso terapéutico , Fumaratos , Línea Celular Tumoral , Fosfohidrolasa PTEN/metabolismo
4.
Nat Cancer ; 5(1): 147-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172338

RESUMEN

Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Citocinas/metabolismo , Células Endoteliales/metabolismo , Receptores CCR7/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proliferación Celular , Colesterol/metabolismo
5.
Cell Rep ; 42(11): 113417, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37950872

RESUMEN

EGFRT790M mutation causes resistance to the first-generation tyrosine kinase inhibitors (TKIs) in patients with non-small cell lung cancer (NSCLC). However, the therapeutic options for sensitizing first TKIs and delaying the emergence of EGFRT790M mutant are limited. In this study, we show that quercetin directly binds with glucose-6-phosphate dehydrogenase (G6PD) and inhibits its enzymatic activity through competitively abrogating NADP+ binding in the catalytic domain. This inhibition subsequently reduces intracellular NADPH levels, resulting in insufficient substrate for methionine reductase A (MsrA) to reduce M790 oxidization of EGFRT790M and inducing the degradation of EGFRT790M. Quercetin synergistically enhances the therapeutic effect of gefitinib on EGFRT790M-harboring NSCLCs and delays the acquisition of the EGFRT790M mutation. Notably, high levels of G6PD expression are correlated with poor prognosis and the emerging time of EGFRT790M mutation in patients with NSCLC. These findings highlight the potential implication of quercetin in overcoming EGFRT790M-driven TKI resistance by directly targeting G6PD.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Glucosafosfato Deshidrogenasa , Mutación/genética , Resistencia a Antineoplásicos/genética
6.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979586

RESUMEN

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Receptores ErbB , Ferroptosis , Glioblastoma , Humanos , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Receptores ErbB/genética , Ferroptosis/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , ARN Mensajero/genética
7.
Nat Commun ; 14(1): 5913, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737247

RESUMEN

Temozolomide (TMZ) is a standard treatment for glioblastoma (GBM) patients. However, TMZ has moderate therapeutic effects due to chemoresistance of GBM cells through less clarified mechanisms. Here, we demonstrate that TMZ-derived 5-aminoimidazole-4-carboxamide (AICA) is converted to AICA ribosyl-5-phosphate (AICAR) in GBM cells. This conversion is catalyzed by hypoxanthine phosphoribosyl transferase 1 (HPRT1), which is highly expressed in human GBMs. As the bona fide activator of AMP-activated protein kinase (AMPK), TMZ-derived AICAR activates AMPK to phosphorylate threonine 52 (T52) of RRM1, the catalytic subunit of ribonucleotide reductase (RNR), leading to RNR activation and increased production of dNTPs to fuel the repairment of TMZ-induced-DNA damage. RRM1 T52A expression, genetic interruption of HPRT1-mediated AICAR production, or administration of 6-mercaptopurine (6-MP), a clinically approved inhibitor of HPRT1, blocks TMZ-induced AMPK activation and sensitizes brain tumor cells to TMZ treatment in mice. In addition, HPRT1 expression levels are positively correlated with poor prognosis in GBM patients who received TMZ treatment. These results uncover a critical bifunctional role of TMZ in GBM treatment that leads to chemoresistance. Our findings underscore the potential of combined administration of clinically available 6-MP to overcome TMZ chemoresistance and improve GBM treatment.


Asunto(s)
Glioblastoma , Hipoxantina Fosforribosiltransferasa , Ribonucleótido Reductasas , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP , Resistencia a Antineoplásicos/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Hipoxantinas , Mercaptopurina , Temozolomida/farmacología , Hipoxantina Fosforribosiltransferasa/genética
8.
J Biomed Res ; 37(5): 326-339, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37750323

RESUMEN

Ionizing radiation is a popular and effective treatment option for glioblastoma (GBM). However, resistance to radiation therapy inevitably occurs during treatment. It is urgent to investigate the mechanisms of radioresistance in GBM and to find ways to improve radiosensitivity. Here, we found that heat shock protein 90 beta family member 1 (HSP90B1) was significantly upregulated in radioresistant GBM cell lines. More importantly, HSP90B1 promoted the localization of glucose transporter type 1, a key rate-limiting factor of glycolysis, on the plasma membrane, which in turn enhanced glycolytic activity and subsequently tumor growth and radioresistance of GBM cells. These findings imply that targeting HSP90B1 may effectively improve the efficacy of radiotherapy for GBM patients, a potential new approach to the treatment of glioblastoma.

9.
Nat Commun ; 14(1): 5590, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696831

RESUMEN

Male breast cancer (MBC) is a rare but aggressive malignancy with cellular and immunological characteristics that remain unclear. Here, we perform transcriptomic analysis for 111,038 single cells from tumor tissues of six MBC and thirteen female breast cancer (FBC) patients. We find that that MBC has significantly lower infiltration of T cells relative to FBC. Metastasis-related programs are more active in cancer cells from MBC. The activated fatty acid metabolism involved with FASN is related to cancer cell metastasis and low immune infiltration of MBC. T cells in MBC show activation of p38 MAPK and lipid oxidation pathways, indicating a dysfunctional state. In contrast, T cells in FBC exhibit higher expression of cytotoxic markers and immune activation pathways mediated by immune-modulatory cytokines. Moreover, we identify the inhibitory interactions between cancer cells and T cells in MBC. Our study provides important information for understanding the tumor immunology and metabolism of MBC.


Asunto(s)
Neoplasias de la Mama Masculina , Humanos , Femenino , Masculino , Análisis de Expresión Génica de una Sola Célula , Terapia de Inmunosupresión , Metabolismo de los Lípidos/genética , Ácidos Grasos
10.
Cancer Lett ; 573: 216380, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660885

RESUMEN

Preoperative MRI is an essential diagnostic and therapeutic reference for gliomas. This study aims to evaluate the prognostic aspect of a radiomics biomarker for glioma and further investigate its relationship with tumor microenvironment and macrophage infiltration. We covered preoperative MRI of 664 glioma patients from three independent datasets: Jiangsu Province Hospital (JSPH, n = 338), The Cancer Genome Atlas dataset (TCGA, n = 252), and Repository of Molecular Brain Neoplasia Data (REMBRANDT, n = 74). Incorporating a multistep post-processing workflow, 20 radiomics features (Rads) were selected and a radiomics survival biomarker (RadSurv) was developed, proving highly efficient in risk stratification of gliomas (cut-off = 1.06), as well as lower-grade gliomas (cut-off = 0.64) and glioblastomas (cut-off = 1.80) through three fixed cut-off values. Through immune infiltration analysis, we found a positive correlation between RadSurv and macrophage infiltration (RMΦ = 0.297, p < 0.001; RM2Φ = 0.241, p < 0.001), further confirmed by immunohistochemical-staining (glioblastomas, n = 32) and single-cell sequencing (multifocal glioblastomas, n = 2). In conclusion, RadSurv acts as a strong prognostic biomarker for gliomas, exhibiting a non-negligible positive correlation with macrophage infiltration, especially with M2 macrophage, which strongly suggests the promise of radiomics-based models as a preoperative alternative to conventional genomics for predicting tumor macrophage infiltration and provides clinical guidance for immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Genómica , Macrófagos , Microambiente Tumoral
12.
FEBS Open Bio ; 13(9): 1789-1806, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37489660

RESUMEN

Glioblastoma is one of the most common malignant brain tumors. Vitamin D, primarily its hormonally active form calcitriol, has been reported to have anti-cancer activity. In the present study, we used patient-derived glioma cell lines to examine the effect of vitamin D3 and calcitriol on glioblastoma. Surprisingly, vitamin D3 showed a more significant inhibitory effect than calcitriol on cell viability and proliferation. Vitamin D receptor (VDR) mediates most of the cellular effects of vitamin D, and thus we examined the expression level and function of VDR via gene silencing and gene knockout experiments. We observed that VDR does not affect the sensitivity of patient-derived glioma cell lines to vitamin D3, and the gene encoding VDR is not essential for growth of patient-derived glioma cell lines. RNA sequencing data analysis and sterolomics analysis revealed that vitamin D3 inhibits cholesterol synthesis and cholesterol homeostasis by inhibiting the expression level of 7-dehydrocholesterol reductase, which leads to the accumulation of 7-dehydrocholesterol and other sterol intermediates. In conclusion, our results suggest that vitamin D3, rather than calcitriol, inhibits growth of patient-derived glioma cell lines via inhibition of the cholesterol homeostasis pathway.


Asunto(s)
Colecalciferol , Glioblastoma , Humanos , Colecalciferol/farmacología , Calcitriol/farmacología , Glioblastoma/tratamiento farmacológico , Vitamina D/farmacología , Línea Celular , Homeostasis , Colesterol
13.
Nat Commun ; 14(1): 4467, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491377

RESUMEN

Activated by its single ligand, hepatocyte growth factor (HGF), the receptor tyrosine kinase MET is pivotal in promoting glioblastoma (GBM) stem cell self-renewal, invasiveness and tumorigenicity. Nevertheless, HGF/MET-targeted therapy has shown limited clinical benefits in GBM patients, suggesting hidden mechanisms of MET signalling in GBM. Here, we show that circular MET RNA (circMET) encodes a 404-amino-acid MET variant (MET404) facilitated by the N6-methyladenosine (m6A) reader YTHDF2. Genetic ablation of circMET inhibits MET404 expression in mice and attenuates MET signalling. Conversely, MET404 knock-in (KI) plus P53 knock-out (KO) in mouse astrocytes initiates GBM tumorigenesis and shortens the overall survival. MET404 directly interacts with the MET ß subunit and forms a constitutively activated MET receptor whose activity does not require HGF stimulation. High MET404 expression predicts poor prognosis in GBM patients, indicating its clinical relevance. Targeting MET404 through a neutralizing antibody or genetic ablation reduces GBM tumorigenicity in vitro and in vivo, and combinatorial benefits are obtained with the addition of a traditional MET inhibitor. Overall, we identify a MET variant that promotes GBM tumorigenicity, offering a potential therapeutic strategy for GBM patients, especially those with MET hyperactivation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Glioblastoma/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , ARN Circular/genética , Neoplasias Encefálicas/metabolismo , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Línea Celular Tumoral
14.
Clin Cancer Res ; 29(18): 3779-3792, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37439870

RESUMEN

PURPOSE: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , Macrófagos Asociados a Tumores/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Proliferación Celular , Microambiente Tumoral/genética
15.
Neuro Oncol ; 25(11): 1947-1962, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37280112

RESUMEN

BACKGROUND: Mitochondrial hyperpolarization achieved by the elevation of mitochondrial quality control (MQC) activity is a hallmark of glioblastoma (GBM). Therefore, targeting the MQC process to disrupt mitochondrial homeostasis should be a promising approach for GBM therapy. METHODS: We used 2-photon fluorescence microscopy, Fluorescence-Activated Cell Sorting, and confocal microscopy with specific fluorescent dyes to detect the mitochondrial membrane potential (MMP) and mitochondrial structures. Mitophagic flux was measured with mKeima. RESULTS: MP31, a phosphatase and tensin homolog (PTEN) uORF-translated and mitochondria-localized micropeptide, disrupted the MQC process and inhibited GBM tumorigenesis. Re-expression of MP31 in patient-derived GBM cells induced MMP loss to trigger mitochondrial fission but blocked mitophagic flux, leading to the accumulation of damaged mitochondria in cells, followed by reactive oxygen species production and DNA damage. Mechanistically, MP31 inhibited lysosome function and blocked lysosome fusion with mitophagosomes by competing with V-ATPase A1 for lactate dehydrogenase B (LDHB) binding to induce lysosomal alkalinization. Furthermore, MP31 enhanced the sensitivity of GBM cells to TMZ by suppressing protective mitophay in vitro and in vivo, but showed no side effects on normal human astrocytes or microglia cells (MG). CONCLUSIONS: MP31 disrupts cancerous mitochondrial homeostasis and sensitizes GBM cells to current chemotherapy, without inducing toxicity in normal human astrocytes and MG. MP31 is a promising candidate for GBM treatment.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Sistemas de Lectura Abierta , Mitocondrias/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Micropéptidos
16.
Neuro Oncol ; 25(9): 1578-1591, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934350

RESUMEN

BACKGROUND: Glioblastomas (GBMs) display striking dysregulation of metabolism to promote tumor growth. Glioblastoma stem cells (GSCs) adapt to regions of heterogeneous nutrient availability, yet display dependency on de novo cholesterol biosynthesis. The transcription factor Sterol Regulatory Element-Binding Protein 2 (SREBP2) regulates cholesterol biosynthesis enzymes and uptake receptors. Here, we investigate adaptive behavior of GSCs under different cholesterol supplies. METHODS: In silico analysis of patient tumors demonstrated enrichment of cholesterol synthesis associated with decreased angiogenesis. Comparative gene expression of cholesterol biosynthesis enzymes in paired GBM specimens and GSCs were performed. In vitro and in vivo loss-of-function genetic and pharmacologic assays were conducted to evaluate the effect of SREBP2 on GBM cholesterol biosynthesis, proliferation, and self-renewal. Chromatin immunoprecipitation quantitative real-time PCR was leveraged to map the regulation of SREBP2 to cholesterol biosynthesis enzymes and uptake receptors in GSCs. RESULTS: Cholesterol biosynthetic enzymes were expressed at higher levels in GBM tumor cores than in invasive margins. SREBP2 promoted cholesterol biosynthesis in GSCs, especially under starvation, as well as proliferation, self-renewal, and tumor growth. SREBP2 governed the balance between cholesterol biosynthesis and uptake in different nutrient conditions. CONCLUSIONS: SREBP2 displays context-specific regulation of cholesterol biology based on its availability in the microenvironment with induction of cholesterol biosynthesis in the tumor core and uptake in the margin, informing a novel treatment strategy for GBM.


Asunto(s)
Glioblastoma , Humanos , Línea Celular Tumoral , Colesterol/metabolismo , Regulación de la Expresión Génica , Glioblastoma/patología , Células Madre Neoplásicas/metabolismo , Células Madre/metabolismo , Células Madre/patología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Microambiente Tumoral
17.
Cancer Discov ; 13(4): 974-1001, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36649564

RESUMEN

Glioblastoma (GBM) constitutes the most lethal primary brain tumor for which immunotherapy has provided limited benefit. The unique brain immune landscape is reflected in a complex tumor immune microenvironment (TIME) in GBM. Here, single-cell sequencing of the GBM TIME revealed that microglia were under severe oxidative stress, which induced nuclear receptor subfamily 4 group A member 2 (NR4A2)-dependent transcriptional activity in microglia. Heterozygous Nr4a2 (Nr4a2+/-) or CX3CR1+ myeloid cell-specific Nr4a2 (Nr4a2fl/flCx3cr1Cre) genetic targeting reshaped microglia plasticity in vivo by reducing alternatively activated microglia and enhancing antigen presentation capacity for CD8+ T cells in GBM. In microglia, NR4A2 activated squalene monooxygenase (SQLE) to dysregulate cholesterol homeostasis. Pharmacologic NR4A2 inhibition attenuated the protumorigenic TIME, and targeting the NR4A2 or SQLE enhanced the therapeutic efficacy of immune-checkpoint blockade in vivo. Collectively, oxidative stress promotes tumor growth through NR4A2-SQLE activity in microglia, informing novel immune therapy paradigms in brain cancer. SIGNIFICANCE: Metabolic reprogramming of microglia in GBM informs synergistic vulnerabilities for immune-checkpoint blockade therapy in this immunologically cold brain tumor. This article is highlighted in the In This Issue feature, p. 799.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Microglía , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Macrófagos , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Microambiente Tumoral/fisiología
18.
Cancer Res ; 83(5): 771-785, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36622331

RESUMEN

Tumor-associated macrophages (TAM) play a crucial role in immunosuppression. However, how TAMs are transformed into immunosuppressive phenotypes and influence the tumor microenvironment (TME) is not fully understood. Here, we utilized single-cell RNA sequencing and whole-exome sequencing data of glioblastoma (GBM) tissues and identified a subset of TAMs dually expressing macrophage and tumor signatures, which were termed double-positive TAMs. Double-positive TAMs tended to be bone marrow-derived macrophages (BMDM) and were characterized by immunosuppressive phenotypes. Phagocytosis of glioma cells by BMDMs in vitro generated double-positive TAMs with similar immunosuppressive phenotypes to double-positive TAMs in the GBM TME of patients. The double-positive TAMs were transformed into M2-like macrophages and drove immunosuppression by expressing immune-checkpoint proteins CD276, PD-L1, and PD-L2 and suppressing the proliferation of activated T cells. Together, glioma cell phagocytosis by BMDMs in the TME leads to the formation of double-positive TAMs with enhanced immunosuppressive phenotypes, shedding light on the processes driving TAM-mediated immunosuppression in GBM. SIGNIFICANCE: Bone marrow-derived macrophages phagocytose glioblastoma cells to form double-positive cells, dually expressing macrophage and tumor signatures that are transformed into M2-like macrophages and drive immunosuppression.


Asunto(s)
Glioblastoma , Glioma , Macrófagos , Fagocitosis , Humanos , Antígenos B7 , Glioblastoma/genética , Glioblastoma/inmunología , Glioblastoma/patología , Glioma/metabolismo , Glioma/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Fenotipo , Microambiente Tumoral/inmunología
19.
Cancer Res ; 83(7): 1094-1110, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36696363

RESUMEN

Radiotherapy is a major component of standard-of-care treatment for gliomas, the most prevalent type of brain tumor. However, resistance to radiotherapy remains a major concern. Identification of mechanisms governing radioresistance in gliomas could reveal improved therapeutic strategies for treating patients. Here, we report that mitochondrial metabolic pathways are suppressed in radioresistant gliomas through integrated analyses of transcriptomic data from glioma specimens and cell lines. Decreased expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α), the key regulator of mitochondrial biogenesis and metabolism, correlated with glioma recurrence and predicted poor prognosis and response to radiotherapy of patients with glioma. The subpopulation of glioma cells with low-mitochondrial-mass exhibited reduced expression of PGC1α and enhanced resistance to radiotherapy treatment. Mechanistically, PGC1α was phosphorylated at serine (S) 636 by DNA-dependent protein kinase in response to irradiation. Phosphorylation at S636 promoted the degradation of PGC1α by facilitating its binding to the E3 ligase RNF34. Restoring PGC1α activity with expression of PGC1α S636A, a phosphorylation-resistant mutant, or a small-molecule PGC1α activator ZLN005 increased radiosensitivity of resistant glioma cells by reactivating mitochondria-related reactive oxygen species production and inducing apoptotic effects both in vitro and in vivo. In summary, this study identified a self-protective mechanism in glioma cells in which radiotherapy-induced degradation of PGC1α and suppression of mitochondrial biogenesis play a central role. Targeted activation of PGC1α could help improve response to radiotherapy in patients with glioma. SIGNIFICANCE: Glioma cells reduce mitochondrial biogenesis by promoting PGC1α degradation to promote resistance to radiotherapy, indicating potential therapeutic strategies to enhance radiosensitivity.


Asunto(s)
Glioma , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Biogénesis de Organelos , Mitocondrias/metabolismo , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Proteínas Portadoras/metabolismo
20.
Neuro Oncol ; 25(8): 1428-1440, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-36521011

RESUMEN

BACKGROUND: Cancer cells including cancer stem cells exhibit a higher rate of ribosome biogenesis than normal cells to support rapid cell proliferation in tumors. However, the molecular mechanisms governing the preferential ribosome biogenesis in glioma stem cells (GSCs) remain unclear. In this work, we show that the novel INHAT repressor (NIR) promotes ribosomal DNA (rDNA) transcription to support GSC proliferation and glioblastoma (GBM) growth, suggesting that NIR is a potential therapeutic target for GBM. METHODS: Immunoblotting, immunohistochemical and immunofluorescent analysis were used to determine NIR expression in GSCs and human GBMs. Using shRNA-mediated knockdown, we assessed the role and functional significance of NIR in GSCs and GSC-derived orthotopic GBM xenografts. We further performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which NIR promotes GBM progression. RESULTS: Our results show that high expression of NIR predicts poor survival in GBM patients. NIR is enriched in the nucleoli of GSCs in human GBMs. Disrupting NIR markedly suppresses GSC proliferation and tumor growth by inhibiting rDNA transcription and pre-ribosomal RNA synthesis. In mechanistic studies, we find that NIR activates rDNA transcription to promote GSC proliferation by cooperating with Nucleolin (NCL) and Nucleophosmin 1 (NPM1), 2 important nucleolar transcription factors. CONCLUSIONS: Our study uncovers a critical role of NIR-mediated rDNA transcription in the malignant progression of GBM, indicating that targeting this axis may provide a novel therapeutic strategy for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , ADN Ribosómico/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioma/patología , Células Madre Neoplásicas/metabolismo , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA