Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.628
Filtrar
1.
Am J Cancer Res ; 14(6): 2894-2904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005673

RESUMEN

OBJECTIVE: To explore the value of preoperative prognostic nutritional index (PNI) and controlling nutritional status (CONUT) score in predicting response and prognosis of patients with advanced non-small cell lung cancer (NSCLC) receiving programmed cell death protein 1 (PD-1) inhibitors. METHODS: A retrospective study was conducted in patients who received PD-1 inhibitors for advanced NSCLC. Patients were assigned by immunotherapy effects into response (partial and complete response, pCR) group (n=52) and non-response (non-pCR) group (n=132). The pathological and clinical data were collected for statistical analysis of factors influencing the immunotherapeutic response. The diagnostic value of PNI and CONUT score for response was assessed. The overall survival (OS) was observed over a 3-year follow-up. COX regression analysis was performed to identify risk factors affecting the survival. The effects of different PNI and CONUT scores on the survival were observed. RESULTS: Multivariate regression analysis showed that, the tumor-node-metastasis (TNM) stage (P=0.001), PNI (P<0.001), and CONUT score (P<0.001) were associated with response. The non-pCR group had a higher 3-year mortality rate and a shorter 3-year OS than the pCR group (P<0.001). COX regression analysis showed that low PNI and high CONUT score were risk factors for poor prognosis. Further analysis showed that patients with low PNI and high CONUT score had lower 3-year survival rates (P=0.005, P<0.001). CONCLUSION: High TNM stage, PNI<50, and CONUT score ≥5 are risk factors for poor response in patients with advanced NSCLC receiving PD-1 inhibitors, and low PNI and high CONUT score suggest poor prognosis.

2.
ACS Sens ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968930

RESUMEN

DNA-based tension sensors have innovated the imaging and calibration of mechanosensitive receptor-transmitted molecular forces, such as integrin tensions. However, these sensors mainly serve as binary reporters, only indicating if molecular forces exceed one predefined threshold. Here, we have developed tandem tension sensor (TTS), which comprises two consecutive force-sensing units, each with unique force detection thresholds and distinct fluorescence spectra, thereby enabling the quantification of molecular forces with dual reference levels. With TTS, we revealed that vinculin is not required for transmitting integrin tensions at approximately 10 pN (piconewtons) but is essential for elevating integrin tensions beyond 20 pN in focal adhesions (FAs). Such high tensions have emerged during the early stage of FA formation. TTS also successfully detected changes in integrin tensions in response to disrupted actin formation, inhibited myosin activity, and tuned substrate elasticity. We also applied TTS to examine integrin tensions in platelets and revealed two force regimes, with integrin tensions surpassing 20 pN at cell central regions and 13-20 pN integrin tensions at the cell edge. Overall, TTS, especially the construct consisting of a hairpin DNA (13 pN opening force) and a shearing DNA (20 pN opening force), stands as a valuable tool for the quantification of receptor-transmitted molecular forces within living cells.

3.
J Gastrointest Oncol ; 15(3): 1035-1049, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38989423

RESUMEN

Background: B7-H3 (or CD276) represents an important costimulatory molecule expressed in many malignant solid tumors, including colorectal cancer (CRC). The receptor of B7-H3 is not known, and the intracellular function of B7-H3 remains obscure. Herein, we report that B7-H3 upregulated the epidermal growth factor heparin-binding epidermal growth factor (HB-EGF), likely by regulating hypoxia-inducible factor 1α (HIF-1α) and thereby promoting the progression of CRC. Methods: Lentiviral transfection was performed on CRC cells to establish stable low-B7-H3 expression cells. A mechanistic analysis with an Agilent human gene expression profiling chip was conducted on them. Clinical data and specimens were collected to detect the connection between B7-H3 and HB-EGF in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the messenger RNA (mRNA) level of B7-H3, HB-EGF, and HIF-1α. Chromatin immunoprecipitation (ChIP) quantitative real-time PCR was conducted. The protein level of HIF-1α and the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) pathway were detected by western blot. HIF-1α was recovered by lentiviral transfection, and the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis ability were detected. Results: B7-H3 promoted tumor progression through HB-EGF and the PI3K-AKT pathway. As B7-H3 was downregulated, HB-EGF levels were significantly reduced simultaneously, a growth trend that was shown by both CRC cell lines and cancer tissues. In addition, B7-H3 and HB-EGF had significant associations with tumor-node-metastasis (TNM) stage and lymph node metastasis in 50 CRC patients. The binding ability of HIF-1α to the HB-EGF promoter region was significantly decreased in the shB7-H3 RKO group. Western blot revealed that PI3K, AKT, and mammalian target of rapamycin (mTOR) protein amounts and p-AKT and p-mTOR phosphorylation were also downregulated in shB7-H3 RKO cells, suggesting that B7-H3 may regulate HIF-1α via PI3K-AKT signaling. After recovery of the HIF-1α level by lentiviral transfection, the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis in CRC cells recovered as well. Conclusions: B7-H3 may transmit intracellular signals through PI3K-AKT-mTOR-HIF-1α signaling, upregulating HB-EGF. As the final transcription factor of the pathway, HIF-1α regulates the transcription of the HB-EGF gene, thereby promoting HB-EGF expression, which eventually mediates cell proliferation, invasion, and angiogenesis and promotes the progression of CRC.

4.
Infect Dis (Lond) ; : 1-10, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963702

RESUMEN

BACKGROUND: Klebsiella pneumoniae (KP) accounts for high antimicrobial resistance and mortality rates of bloodstream infections (BSIs). OBJECTIVES: To investigate incidence, antimicrobial resistance and risk factors for mortality of KP BSIs in East China. METHODS: A retrospective study of patients with KP BSIs was conducted in a tertiary care hospital from 2018 to 2022. Medical records of all hospitalised patients with KP BSIs were reviewed and analysed. The incidence, antimicrobial resistance and mortality of KP BSIs were evaluated. The Kaplan-Meier method was used to plot survival curves and logistic regression was used to analyse risk factors for crude 30-day mortality. RESULTS: A total of 379 inpatients with KP BSIs were enrolled. The incidence of patients with KP BSIs was fluctuating between 4.77 and 9.40 per 100,000 patient-days. The crude 30-day mortality rate of these patients was 26.39%. Of the 379 KPisolates, 197 (51.98%) were carbapenem-resistant (CR) and 252 (66.49%) were multidrug-resistant (MDR). All isolates showed the lowest resistance to tigecycline (13.77%) and polymyxin B (14.61%). Cases with MDR/CR isolates had significantly longer length of hospital stay, higher crude 30-day mortality and medical costs than non-MDR/non-CR isolates. Age, CR phenotype, paracentesis, indwelling central venous catheter (CVC), use of carbapenems, tetracyclines, polymyxins B, and irrational empiric treatment were independently associated with crude 30-day mortality. CONCLUSION: MDR/CR KP BSIs are associated with increased mortality, healthcare costs and prolonged hospitalisation. Patients with advanced age, CR phenotype, paracentesis, CVC, exposure to some antibiotics, and irrational empirical antibiotic treatment are at higher mortality risk.

5.
Inorg Chem ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982873

RESUMEN

Investigations of transition-metal boride clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The geometric structures and bonding features of heteronuclear boron-containing transition metal carbonyl cluster cations BM(CO)6+ and BM2(CO)8+ (M = Co, Rh, and Ir) are studied by a combination of the infrared photodissociation spectroscopy and density functional calculations at B3LYP/def2-TZVP level. The completely coordinated BM2(CO)8+ complexes are characterized as a sandwich structure composed of two staggered M(CO)4 fragments and a boron cation, featuring a D3d symmetry and 1Eg electronic ground state as well as metal-anchored carbonyls in an end-on manner. In conjunction with theoretical calculations, multifold metal-boron-metal bonding interactions in BM2(CO)8+ complexes involving the filled d orbitals of the metals and the empty p orbitals of the boron cation were unveiled, namely, one σ-type M-B-M bond and two π-type M-B-M bonds. Accordingly, the BM2(CO)8+ complexes can be described as a linear conjugated (OC)4M═B═M(CO)4 skeleton with a formal B-M bond index of 1.5. The three delocalized d-p-d covalent bonds render compensation for the electron deficiency of the cationic boron center and endow both metal centers with the favorable 18-electron structure, thus contributing much to the overall structural stability of the BM2(CO)8+ cations. As a comparison, the saturated BRh(CO)6+ and BIr(CO)6+ complexes are determined to be a doublet Cs-symmetry structure with an unbridged (OC)2B-M(CO)4 pattern, involving a two-center σ-type (OC)2B → M(CO)4+ dative single bond along with a weak covalent B-M half bond. This work offers important insight into the structure and bonding of late transition metal boride carbonyl cluster cations.

6.
Angew Chem Int Ed Engl ; : e202409193, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985085

RESUMEN

The limited oxidation stability of ether solvents has posed significant challenges for their applications in high-voltage lithium metal batteries (LMBs). To tackle this issue, the prevailing strategy either adopts a high concentration of fluorinated salts or relies on highly fluorinated solvents, which will significantly increase the manufacturing cost and create severe environmental hazards. Herein, an alternative and sustainable salt engineering approach is proposed to enable the utilization of dilute electrolytes consisting of fluorine (F)-free ethers in high-voltage LMBs. The proposed 0.8 M electrolyte supports stable lithium plating-stripping with a high Coulombic efficiency of 99.47% and effectively mitigates the metal dissolution, phase transition, and gas release issues of the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode upon charging to high voltages. Consequently, the 4.5 V high-loading Li||NCM 811 cell shows a capacity retention of 75.2% after 300 cycles. Multimodal experimental characterizations coupled with theoretical investigations demonstrate that the boron-containing salt plays a pivotal role in forming the passivation layers on both anode and cathode. The present simple and cost-effective electrolyte design strategy offers a promising and alternative avenue for using commercially mature, environmentally benign, and low-cost F-free ethers in high-voltage LMBs.

7.
J Agric Food Chem ; 72(27): 15164-15175, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38938126

RESUMEN

Insecticide susceptibility is mainly determined by the insect host, but symbiotic bacteria are also an important affecting factor. In this study, we investigate the relationship between the structure of gut bacterial symbionts and insecticide susceptibility in Diaphorina citri, the important carrier of Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). Our results indicated that antibiotic treatment significantly increased the susceptibility of D. citri to bifenthrin and thiamethoxam, and significantly decreased the relative abundance of Wolbachia and Profftella, enzyme activities of CarEs, and expression level of multiple CarE genes. The relative loads of Wolbachia and Profftella were positively correlated with DcitCCE13, DcitCCE14, DcitCCE15, and DcitCCE16. RNAi and prokaryotic expression revealed that DcitCCE15 is associated with bifenthrin metabolism. These results revealed that bacterial symbionts might regulate DcitCCE15 expression, which is involved in the susceptibility of D. citri to bifenthrin.


Asunto(s)
Hemípteros , Insecticidas , Simbiosis , Animales , Insecticidas/farmacología , Hemípteros/microbiología , Hemípteros/genética , Hemípteros/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Wolbachia/efectos de los fármacos , Wolbachia/genética , Piretrinas/farmacología , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Inactivación Metabólica/genética
8.
Small ; : e2400498, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863125

RESUMEN

Sodium-ion battery (SIB) is a candidate for the stationary energy storage systems because of the low cost and high abundance of sodium. However, the energy density and lifespan of SIBs suffer severely from the irreversible consumption of the Na-ions for the formation of the solid electrolyte interphase (SEI) layer and other side reactions on the electrodes. Here, Na3.5C6O6 is proposed as an air-stable high-efficiency sacrificial additive in the cathode to compensate for the lost sodium. It is characteristic of low desodiation (oxidation) potential (3.4-3.6 V vs. Na+/Na) and high irreversible desodiation capacity (theoretically 378 mAh g-1). The feasibility of using Na3.5C6O6 as a sodium compensation additive is verified with the improved electrochemical performances of a Na2/3Ni1/3Mn1/3Ti1/3O2ǀǀhard carbon cells and cells using other cathode materials. In addition, the structure of Na3.5C6O6 and its desodiation path are also clarified on the basis of comprehensive physical characterizations and the density functional theory (DFT) calculations. This additive decomposes completely to supply abundant Na ions during the initial charge without leaving any electrochemically inert species in the cathode. Its decomposition product C6O6 enters the carbonate electrolyte without bringing any detectable negative effects. These findings open a new avenue for elevating the energy density and/or prolonging the lifetime of the high-energy-density secondary batteries.

9.
Molecules ; 29(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930895

RESUMEN

The geometric structure and bonding features of dinuclear vanadium-group transition metal carbonyl cation complexes in the form of VM(CO)n+ (n = 9-11, M = V, Nb, and Ta) are studied by infrared photodissociation spectroscopy in conjunction with density functional calculations. The homodinuclear V2(CO)9+ is characterized as a quartet structure with CS symmetry, featuring two side-on bridging carbonyls and an end-on semi-bridging carbonyl. In contrast, for the heterodinuclear VNb(CO)9+ and VTa(CO)9+, a C2V sextet isomer with a linear bridging carbonyl is determined to coexist with the lower-lying CS structure analogous to V2(CO)9+. Bonding analyses manifest that the detected VM(CO)9+ complexes featuring an (OC)6M-V(CO)3 pattern can be regarded as the reaction products of two stable metal carbonyl fragments, and indicate the presence of the M-V d-d covalent interaction in the CS structure of VM(CO)9+. In addition, it is demonstrated that the significant activation of the bridging carbonyls in the VM(CO)9+ complexes is due in large part to the diatomic cooperation of M-V, where the strong oxophilicity of vanadium is crucial to facilitate its binding to the oxygen end of the carbonyl groups. The results offer important insight into the structure and bonding of dinuclear vanadium-containing transition metal carbonyl cluster cations and provide inspiration for the design of active vanadium-based diatomic catalysts.

10.
Thromb Res ; 240: 109044, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824799

RESUMEN

Protein C (PC), a vitamin K-dependent serine protease zymogen in plasma, can be activated by thrombin-thrombomodulin(TM) complex, resulting in the formation of activated protein C (APC). APC functions to downregulate thrombin generation by inactivating active coagulation factors V(FVa) and VIII(FVIIIa). Deficiency in PC increases the risk of venous thromboembolism (VTE). We have identified two unrelated VTE patients with the same heterozygous mutation (c.1384 T > C, p.Ter462GlnextTer17) in PROC. To comprehend the role of this mutation in VTE development, we expressed recombinant PC-Ter462GlnextTer17 in mammalian cells and evaluated its characteristics using established coagulation assay systems. Functional studies revealed a significant impairment in the activation of the mutant by thrombin or thrombin-TM complex. Furthermore, APC-Ter462GlnextTer17 demonstrated diminished hydrolytic activity towards the chromogenic substrate S2366. APTT and FVa degradation assays showed that both the anticoagulant activity of the mutant protein was markedly impaired, regardless of whether protein S was present or absent. These results were further supported by a thrombin generation assay conducted using purified and plasma-based systems. In conclusion, the Ter462GlnextTer17 mutation introduces a novel tail at the C-terminus of PC, leading to impaired activity in both PC zymogen activation and APC's anticoagulant function. This impairment contributes to thrombosis in individuals carrying this heterozygous mutation and represents a genetic risk factor for VTE.


Asunto(s)
Mutación , Proteína C , Trombosis de la Vena , Proteína C/metabolismo , Proteína C/genética , Humanos , Trombosis de la Vena/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto
11.
Phys Chem Chem Phys ; 26(26): 18196-18204, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904087

RESUMEN

The Zr-2.5Nb alloy is a typical pressure tube material in heavy water nuclear reactors, and an increase of hydrogen isotope content in the alloy during service can pose major safety risks; hot vacuum extraction-mass spectrometry is an efficient method for evaluating hydrogen isotope concentrations in the Zr-2.5Nb alloy. This work investigates the kinetics and thermodynamic properties of deuterium (D) absorption and desorption of the Zr-2.5Nb alloy using the constant volume adsorption method and the hot vacuum extraction method. In addition to the previously reported volume contraction model, it was observed that at 600 °C and above, the reaction between D2 and Zr-2.5Nb is dominated by diffusion, while the reaction is predominantly influenced by surface adsorption and dissociation below 600 °C. Phase transition sequence of Zr-2.5Nb deuterides during non-isothermal desorption was established using quantitatively calibrated thermal desorption spectra combined with the phase transition process of deuteride decomposition. These results can provide important references for optimizing the process parameters of the hot vacuum extraction-mass spectrometry method.

12.
Thromb Haemost ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38914130

RESUMEN

BACKGROUND: Venous thromboembolism (VTE) is predisposed by thrombotic mutations in patients with hereditary thrombophilia. Although prothrombin deficiencies caused by homozygous or compound heterozygous mutations are associated with bleeding diathesis, rare cases have shown a correlation between heterozygous prothrombin mutations and thrombosis. MATERIALS AND METHODS: We surveyed genetic variants involved in thrombosis and hemostasis in 347 patients with unprovoked VTE or having a positive family history of thrombosis. For patients identified with heterozygous prothrombin mutations, we conducted family investigations and performed a thrombin generation test (TGT) to elucidate the thrombotic risk. Novel mutants were expressed and subjected to functional assays to clarify the underlying thrombotic mechanisms. RESULTS: Heterozygous prothrombin mutations were identified in 3.5% of patients (12/347), including three novel mutations Phe382Ser, Phe382Leu, and Asp597Tyr found in one patient each, as well as previously reported Arg541Trp mutation in four patients and Arg596Gln mutation in five patients. A total of 42 mutation carriers were identified within the 12 pedigrees, among whom 64.3% (27/42) had experienced thrombotic events. TGT results demonstrated hypercoagulability for carriers of the five mutations, with Arg596Gln showing the highest thrombin generation potential followed by Arg541Trp. The Phe382-associated mutations severely impaired thrombomodulin-binding ability of thrombin, resulting in obviously reduced protein C (PC) activation. The Asp597Tyr mutation exhibited a mild reduction in both inactivation by antithrombin and PC activation reactions. CONCLUSION: The presence of heterozygous prothrombin mutations represents a potential genetic predisposition for VTE. All thrombosis-associated mutations potentiate coagulation activity by either conferring antithrombin resistance and/or impairing PC pathway activity.

13.
Adv Mater ; : e2405876, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935407

RESUMEN

The disordered phase of spinel LiMn1.5Ni0.5O4 (LNMO) is more appealing as high-voltage cathode due to its superior electrochemical performance compared to its ordered counterpart. Various methods are developed to induce a phase transition. However, the resulting materials often suffer from capacity degradation due to the adverse influence of accompanying Mn3+ ions. This study presents the utilization of local magnetic fields generated by a magnetic Fe3O4 shell to induce a disordered phase transition in LNMO at lower temperature, transitioning it from an order state without significantly increasing the Mn3+ content. The pivotal role played by the local magnetic fields is evidenced through comparisons with samples with nonmagnetic Al2O3 shell, samples subjected to sole heat treatment, and samples heat-treated within magnetic fields. The key finding is that magnetic fields can initiate a radical pair mechanism, enabling the induction of order-disorder phase transition even at lower temperatures. The disordered spinal LNMO with a magnetic Fe3O4 shell exhibits excellent cycling stability and kinetic properties in electrochemical characterization as a result. This innovation not only unravels the intricate interplay between the disordered phase and Mn3+ content in the cathode spinel but also pioneers the use of magnetic field effects for manipulating material phases.

14.
IEEE Trans Biomed Eng ; PP2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889018

RESUMEN

OBJECTIVE: Paraspinal muscle segmentation and reconstruction from MR images are critical to implement quantitative assessment of chronic and recurrent low back pains. Due to unclear muscle boundaries and shape variations, current segmentation methods demonstrate suboptimal performance with insufficient training samples. This work proposes a novel approach to modeling and inferring muscle shapes that enhances segmentation accuracy and efficiency with few training data. METHODS: Firstly, a probabilistic shape model (PSM) based on Fourier basis functions and Gaussian processes (GPs) is designed to encode 3D muscle shapes, where anatomical meanings are attributed to the model's geometric parameters. Muscle shape variations and correlations are described by the GPs of the geometric parameters, which allow a small size of parameters to model the distribution of muscle shapes. Secondly, a Bayesian framework is developed to achieve entire muscle segmentation by posterior estimations. The framework fuses the geometric prior of the PSM with observations of deep-learning-based edge detections (DED) and sparse manual annotations, by which issues of unclear boundaries and shape variations can be compensated. RESULTS AND CONCLUSION: Experiments on public and clinical datasets demonstrate that, with just three manually annotated slices, our method achieves a Dice similarity coefficient exceeding 90%, which outperforms other methods. Meanwhile, our method needs only a small training dataset and offers rapid inference speeds in clinical applications. SIGNIFICANCE: Our study enables precise assessment of paraspinal muscles in 2D and 3D, aiding clinicians and researchers in understanding muscle changes in various conditions, potentially enhancing treatment outcomes.

15.
Chemosphere ; 361: 142573, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852630

RESUMEN

Dynamic impacts of short-term enrofloxacin (ENR) exposure on juvenile marine fish are not well understood, and the underlying mechanisms remain unclear. We therefore investigated the accumulation and elimination of ENR in the liver of juvenile black seabream Acanthopagrus schlegelii. Meanwhile, the dynamic alterations of biochemical parameters and liver transcriptomes after short-term bath immersion and withdrawal treatment were explored. The results indicated that the contents of ENR in the liver were significantly increased after bath administration for 24 h, and then quickly declined to very low concentrations along with the decontamination time increasing. Judging from the changes in biochemical indicators and liver transcriptomic alterations, 0.5 and 1 mg/L ENR exposure for 24 h triggered oxidative stress, impairment of immune system, as well as aberrant lipid metabolism via differential molecular pathways. Interestingly, biochemical and transcriptome analysis as well as integrated biomarker response (IBR) values showed that more significant changes appeared in 1 mg/L ENR group at decontamination periods, which indicated that the impact of high dose ENR on juvenile A. schlegelii may persist even after depuration for 7 days. These results revealed that the risk of short-term bath of 1 mg/L ENR should not be overlooked even after depuration period. Therefore, attention should be paid to the dosage control when administering the drug to juvenile A. schlegelii, and the restoration of physiological disturbance may be an important factor in formulating a reasonable treatment plan.


Asunto(s)
Enrofloxacina , Hígado , Dorada , Contaminantes Químicos del Agua , Animales , Dorada/metabolismo , Dorada/genética , Contaminantes Químicos del Agua/toxicidad , Hígado/metabolismo , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Antibacterianos/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos
16.
EBioMedicine ; 104: 105175, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823087

RESUMEN

BACKGROUND: Insomnia is the most common sleep disorder in patients with epithelial ovarian cancer (EOC). We investigated the causal association between genetically predicted insomnia and EOC risk and survival through a two-sample Mendelian randomization (MR) study. METHODS: Insomnia was proxied using genetic variants identified in a genome-wide association study (GWAS) meta-analysis of UK Biobank and 23andMe. Using genetic associations with EOC risk and overall survival from the Ovarian Cancer Association Consortium (OCAC) GWAS in 66,450 women (over 11,000 cases with clinical follow-up), we performed Iterative Mendelian Randomization and Pleiotropy (IMRP) analysis followed by a set of sensitivity analyses. Genetic associations with survival and response to treatment in ovarian cancer study of The Cancer Genome Atlas (TCGA) were estimated controlling for chemotherapy and clinical factors. FINDINGS: Insomnia was associated with higher risk of endometrioid EOC (OR = 1.60, 95% CI 1.05-2.45) and lower risk of high-grade serous EOC (HGSOC) and clear cell EOC (OR = 0.79 and 0.48, 95% CI 0.63-1.00 and 0.27-0.86, respectively). In survival analysis, insomnia was associated with shorter survival of invasive EOC (OR = 1.45, 95% CI 1.13-1.87) and HGSOC (OR = 1.4, 95% CI 1.04-1.89), which was attenuated after adjustment for body mass index and reproductive age. Insomnia was associated with reduced survival in TCGA HGSOC cases who received standard chemotherapy (OR = 2.48, 95% CI 1.13-5.42), but was attenuated after adjustment for clinical factors. INTERPRETATION: This study supports the impact of insomnia on EOC risk and survival, suggesting treatments targeting insomnia could be pivotal for prevention and improving patient survival. FUNDING: National Institutes of Health, National Cancer Institute. Full funding details are provided in acknowledgments.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Ováricas , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Femenino , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/mortalidad , Carcinoma Epitelial de Ovario/complicaciones , Análisis de Supervivencia
18.
Curr Oncol Rep ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837106

RESUMEN

PURPOSE OF REVIEW: This review sought to define the emerging roles of urinary tumor DNA (utDNA) for diagnosis, monitoring, and treatment of bladder cancer. Building from early landmark studies the focus is on recent studies, highlighting how utDNA could aid personalized care. RECENT FINDINGS: Recent research underscores the potential for utDNA to be the premiere biomarker in bladder cancer due to the constant interface between urine and tumor. Many studies find utDNA to be more informative than other biomarkers in bladder cancer, especially in early stages of disease. Points of emphasis include superior sensitivity over traditional urine cytology, broad genomic and epigenetic insights, and the potential for non-invasive, real-time analysis of tumor biology. utDNA shows promise for improving all phases of bladder cancer care, paving the way for personalized treatment strategies. Building from current research, future comprehensive clinical trials will validate utDNA's clinical utility, potentially revolutionizing bladder cancer management.

19.
Asia Pac J Clin Nutr ; 33(2): 237-246, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38794983

RESUMEN

BACKGROUND AND OBJECTIVES: This study aims to examine the causal relationship between dietary factors and ulcerative colitis (UC). METHODS AND STUDY DESIGN: The analysis utilized data from genome-wide association studies (GWAS). Dried fruit, vegetables, processed meat, fresh fruit, and cereal intake were examined as exposure factors. UC was considered the outcome. Two-sample Mendelian randomization (TSMR) analysis was performed using methods. Heterogeneity and horizontal pleiotropy assessments were conducted to ensure the robustness of our findings. Additionally, we applied False Discovery Rate (FDR) corrections for multiple tests. RESULTS: The analysis revealed a significant inverse causal relationship between dried fruit intake and UC risk (odds ratio [OR]: 0.488, 95% confidence interval [CI]: 0.261 to 0.915, p = 0.025). No significant association was observed between vegetable intake (OR: 1.742, 95% CI: 0.561 to 5.415, p = 0.337), processed meat intake (OR: 1.136, 95% CI: 0.552 to 2.339, p = 0.729), fresh fruit intake (OR: 0.977, 95% CI: 0.465 to 2.054, p = 0.952), cereal intake (OR: 1.195, 95% CI: 0.669 to 2.134, p = 0.547). The low heterogeneity observed across analyses and the confirmation of stability through leave-one-out analysis reinforce the reliability of these results. Moreover, after adjusting for multiple tests, none of the dietary factors reached a p-value below the conventional significance threshold of 0.05. CONCLUSIONS: This study provides evidence of a potential association between dried fruit intake and a reduced risk of UC. Further MR studies incorporating larger GWAS datasets are needed to confirm these findings.


Asunto(s)
Colitis Ulcerosa , Dieta , Frutas , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Colitis Ulcerosa/genética , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Dieta/estadística & datos numéricos , Dieta/métodos , Verduras , Factores de Riesgo
20.
J Thromb Haemost ; 22(7): 2052-2058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704122

RESUMEN

BACKGROUND: The activity of von Willebrand factor (VWF) in facilitating platelet adhesion and aggregation correlates with its multimer size. Traditional ristocetin-dependent functional assays lack sensitivity to multimer sizes. Recently, nanobodies targeting the autoinhibitory module and activating VWF were identified. OBJECTIVES: To develop an assay that can differentiate the platelet-binding activity of VWF multimers. METHODS: A novel enzyme-linked immunosorbent assay (nanobody-triggered glycoprotein Ib binding assay [VWF:GPIbNab]) utilizing a VWF-activating nanobody was developed. Recombinant VWF, plasma-derived VWF (pdVWF), and selected gel-filtrated fractions of pdVWF were evaluated for VWF antigen and activity levels. A linear regression model was developed to estimate the specific activity of VWF multimers. RESULTS: Of the 3 activating nanobodies tested, 6C11 with the lowest activation effect exhibited the highest sensitivity for high-molecular-weight multimers (HMWMs) of VWF. VWF:GPIbNab utilizing 6C11 (VWF:GPIbNab6C11) produced significantly higher activity/antigen ratios for recombinant VWF (>2.0) and HMWM-enriched pdVWF fractions (>2.0) than for pdVWF (∼1.0) or fractions enriched with shorter multimers (<1.0). The differences were much larger than those produced by VWF:GPIbNab utilizing other nanobodies, VWF:GPIbM, VWF:GPIbR, or VWF:CB assays. Linear regression analysis of 5 pdVWF fractions of various multimer sizes produced an estimated specific activity of 2.7 for HMWMs. The analysis attributed >90% of the VWF activity measured by VWF:GPIbNab6C11 to that of HMWMs, which is significantly higher than all other activity assays tested. CONCLUSION: The VWF:GPIbNab6C11 assay exhibits higher sensitivity to HMWMs than ristocetin-based and collagen-binding assays. Future studies examining the application of this assay in clinical settings and any associated therapeutic benefit of doing so are warranted.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Multimerización de Proteína , Anticuerpos de Dominio Único , Factor de von Willebrand , Factor de von Willebrand/metabolismo , Factor de von Willebrand/análisis , Humanos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Modelos Lineales , Proteínas Recombinantes , Plaquetas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Unión Proteica , Adhesividad Plaquetaria , Peso Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...