Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Ecol Evol ; 14(10): e70283, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39364038

RESUMEN

Gut microbiota is related to host fitness, and influenced by geographical locations and habitats. Pomacea canaliculata is a malignant invasive alien snail that threatens agricultural production and ecosystem functions worldwide. Clarifying the general rules of the gut microbial community structure and function of the snails in different geographical locations and habitats is of great significance for understanding their invasion at different spatial scales. This study used high-throughput sequencing technology to compare and analyze the differences in community structure and function of gut microbiota in P. canaliculata from five geographical locations (Liuzhou, Yulin, Nanning, Wuzhou, and Hezhou) and three different habitats (pond, paddy field, and ditch) in Guangxi Province. The results showed that intestinal microbial alpha diversity of P. canaliculata was higher in Liuzhou, Yulin, lower in Nanning, Wuzhou, Hezhou, and higher in ponds compared with paddy fields and ditches. The dominant phyla of gut microbiota in snails were Firmicutes, Cyanobacteria, Proteobacteria, Fusobacteriota, Bacteroidota, and the dominant genus was Lactococcus. The community structure of gut microbiota in snails varied significantly across different geographical locations and habitats, and the phyla Firmicutes, Cyanobacteria had significantly higher relative abundance in snails collected from Nanning and Yulin, respectively. Moreover, the relative abundance of gut functional microbiota associated with human disease in P. canaliculata was significantly affected by geographical locations and habitats, and with the highest abundance in ponds. However, the relative abundance of functional microbiota related to metabolism, genetic information processing, organizational system, environmental information processing, and cellular processes were only significantly affected by geographical locations. Collectively, geographical locations and habitats had significantly different effects on the community structure and function of gut microbiota in P. canaliculata, and the greater differences were caused by geographical locations rather than by habitats.

2.
Cell Rep ; 43(11): 114845, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39418165

RESUMEN

Extrachromosomal circular DNAs (eccDNAs) are defined as distinct genomic entities of circular and mobile DNA molecules, but their molecular functions in and impact on breast cancer (BC) are rarely known. This study used Circle-seq to analyze eccDNAs from 19 BC tissues and 17 adjacent normal tissues. We found that eccDNAs are present on all chromosomes and enriched in seven eccDNA hotspot genes (HSGs) associated with the BC pathway. Several eccDNAs harboring entire genes (eccGenes) and eccDNAs harboring miRNAs (eccMIRs) were identified and linked to cancer-relevant pathways. Synthetic eccMIR6748, eccMIR6508, and eccMIR3142 elevated miRNA expression in MCF-7 cells, with eccMIR6748 promoting BC cell migration and invasion by upregulating miR-6748, which suppresses tumor suppressor candidate factor 5 (TUSC5) at the post-transcriptional level. eccMIR6748 also influences BC progression via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. These findings suggest that eccDNAs, which contain functional genomic segments, play a role in BC initiation and progression, offering a dynamic source of genomic plasticity and potential as biomarkers and therapeutic targets.

3.
J Agric Food Chem ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39432373

RESUMEN

A previous study showed that kiwifruit polysaccharide (KFP) has benefits in relieving intestinal inflammation, while the underlying mechanism remains unresolved. The objective of this study was to investigate the regulatory effect of KFP on the gut microbiota metabolism and intestinal barrier of ulcerative colitis (UC) mice induced by dextran sulfate sodium (DSS). KFP significantly improved the UC symptoms including weight loss, shortened colon length, splenomegaly, diarrhea, hematochezia, and colon inflammation of mice. In addition, KFP could alleviate DSS-caused gut microbiota dysbiosis and increase the levels of short-chain fatty acids in the cecal contents of mice. Furthermore, the results of nontargeted and targeted metabolomics analysis combined with antibiotic treatment revealed that KFP could regulate gut microbiota-dependent tryptophan metabolism, activate the aryl hydrocarbon receptor (AhR) in colon cells, and enhance interleukin-22 production and tight junction proteins' (ZO-1, occludin, and claudin3) expression to repair the intestinal barrier in UC mice. Immunofluorescence results showed that KFP significantly upregulated the conjunction of lectin WGA and UEA1 in the UC mouse colon, implying that KFP promoted fucosylation in the colon. These results suggest that KFP alleviates UC primarily via targeting the gut microbiota involved in the AhR pathway and upregulating colon fucosylation.

4.
Mar Pollut Bull ; 209(Pt A): 117053, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39396450

RESUMEN

Cadmium (Cd) is currently one of the heavy metals with the highest environmental toxicity impact. Sodium thiosulfate (Na2S2O3) is a commonly used heavy metal detoxification drug in clinical practice, however, it has not been used for Cd detoxification of Litopenaeus vannamei. The present study used exposure of L. vannamei to 150 µg/L of Cd while mitigating in the addition of 75 µg/L of Na2S2O3 for 28 days. The goal was to study the detoxifying effect of Na2S2O3 on L. vannamei poisoning and its role in intestinal flora. The results showed that the growth of Cd group was inhibited, and the growth rate and weight gain of Cd + ST group were greater than that of Cd group. The function and structure of L. vannamei intestinal microorganisms were significantly changed under Cd stress. This work reveals that Na2S2O3 can mitigate the damage caused by this concentration to L. vannamei to a certain extent.

5.
Food Chem ; 463(Pt 3): 141362, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39326310

RESUMEN

Nowadays, the overconsumption of artificial sweeteners and their related adverse health impacts have proposed an urgent need to develop safe and healthy alternatives. Herein, we introduce ChemSweet, an AI-based platform for the rapid discovery of potential sweet molecules (http://chemsweet.ddai.tech) with the consideration of their physicochemical properties, sweetness profile, and health risks at the same time. Machine learning prediction models of four important physicochemical and four toxicity properties were established and integrated with the platform to evaluate the candidate molecules' biosafety and stability during the processing processes. Then, a new sweet taste prediction system was developed which ensures the sweet evaluation of six specific kinds of sweeteners. To facilitate the practical application of ChemSweet, the SuperNatural database was integrated for the rational screening of promising new sweeteners. We successfully identified 294 potential sweeteners that simultaneously meet the multiple anticipated criteria. We believe that ChemSweet will serve as a useful tool for identifying safe and healthy sweeteners while reducing the timeframe and high experimental costs.

6.
Proc Natl Acad Sci U S A ; 121(39): e2404395121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292743

RESUMEN

Adult central nervous system (CNS) neurons down-regulate growth programs after injury, leading to persistent regeneration failure. Coordinated lipids metabolism is required to synthesize membrane components during axon regeneration. However, lipids also function as cell signaling molecules. Whether lipid signaling contributes to axon regeneration remains unclear. In this study, we showed that lipin1 orchestrates mechanistic target of rapamycin (mTOR) and STAT3 signaling pathways to determine axon regeneration. We established an mTOR-lipin1-phosphatidic acid/lysophosphatidic acid-mTOR loop that acts as a positive feedback inhibitory signaling, contributing to the persistent suppression of CNS axon regeneration following injury. In addition, lipin1 knockdown (KD) enhances corticospinal tract (CST) sprouting after unilateral pyramidotomy and promotes CST regeneration following complete spinal cord injury (SCI). Furthermore, lipin1 KD enhances sensory axon regeneration after SCI. Overall, our research reveals that lipin1 functions as a central regulator to coordinate mTOR and STAT3 signaling pathways in the CNS neurons and highlights the potential of lipin1 as a promising therapeutic target for promoting the regeneration of motor and sensory axons after SCI.


Asunto(s)
Axones , Neuronas Motoras , Regeneración Nerviosa , Fosfatidato Fosfatasa , Factor de Transcripción STAT3 , Transducción de Señal , Traumatismos de la Médula Espinal , Serina-Treonina Quinasas TOR , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Animales , Axones/metabolismo , Axones/fisiología , Regeneración Nerviosa/fisiología , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Ratones , Ácidos Fosfatidicos/metabolismo , Células Receptoras Sensoriales/metabolismo , Femenino , Tractos Piramidales/metabolismo , Tractos Piramidales/patología
7.
Nat Chem ; 16(10): 1621-1629, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39251841

RESUMEN

Multi-site functionalization of molecules provides a potent approach to accessing intricate compounds. However, simultaneous functionalization of the reactive site and the inert remote C(sp3)-H poses a formidable challenge, as chemical reactions conventionally occur at the most active site. In addition, achieving precise control over site selectivity for remote C(sp3)-H activation presents an additional hurdle. Here we report an alternative modular method for alkene difunctionalization, encompassing radical-triggered translocation of functional groups and remote C(sp3)-H desaturation via photo/cobalt dual catalysis. By systematically combining radical addition, functional group migration and cobalt-promoted hydrogen atom transfer, we successfully effectuate the translocation of the carbon-carbon double bond and another functional group with precise site selectivity and remarkable E/Z selectivity. This redox-neutral approach shows good compatibility with diverse fluoroalkyl and sulfonyl radical precursors, enabling the migration of benzoyloxy, acetoxy, formyl, cyano and heteroaryl groups. This protocol offers a resolution for the simultaneous transformation of manifold sites.

8.
J Cancer ; 15(17): 5622-5635, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308683

RESUMEN

Purpose: Breast cancer poses a huge threat to the lives and health of women worldwide. However, drug resistance makes the treatment of breast cancer challenging. This study aims to investigate the effect of miR-141-3p on paclitaxel resistance and its underlying mechanisms in breast cancer. Methods: Using bioinformatics analysis and qRT-PCR to explore the potential molecule miR-141-3p. Specific binding of miR-141-3p to Keap1 was determined by using a dual luciferase reporter assay. qRT-PCR and Western blot were utilized to observe the expression of miR-141-3p, Keap1, Nrf2, SLC7A11 and GPX4. GSH/GSSG content, MDA content and JC-1 assays were used to observe the ferroptosis levels of breast cancer cells. CCK-8 assay was used to observe the cell viability of breast cancer cells. Tumor subcutaneous transplantation experiment was used to understand the effect of miR-141-3p on paclitaxel resistance in breast cancer in vivo. Results: In the present study, miR-141-3p was found to be highly expressed and associated with poor prognosis in breast cancer. miR-141-3p inhibited Keap1 expression, promoted Nrf2 expression, and facilitated paclitaxel resistance in breast cancer cells. Inhibition of miR-141-3p promoted Keap1 expression, inhibited Nrf2 and its downstream SLC7A11-GSH-GPX4 signaling pathway, as well as promoted ferroptosis in cancer cells, and inhibited paclitaxel and RSL3 resistance. ML385 blocks the effect of miR-141-3p on paclitaxel resistance and ferroptosis resistance in breast cancer cells. In vivo, miR-141-3p mimics promoted paclitaxel resistance, whereas miR-141-3p inhibitors inhibited paclitaxel resistance in breast cancer cells. Conclusion: This work revealed that modulation of the Keap1-Nrf2 signaling pathway by miR-141-3p promoted paclitaxel resistance via regulating ferroptosis in breast cancer cells.

9.
Ecotoxicol Environ Saf ; 284: 116891, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39153280

RESUMEN

Shrimp are non-negligible victims of cadmium (Cd) contamination, and there is still a lack of strategies for mitigating Cd toxicity in shrimp. Bacillus cereus, with its significant heavy metal (HM) tolerance and chelating effects, is a representative beneficial bacterium to be investigated for mitigating the toxicity of Cd exposure. This study revealed the effects and potential mechanisms of B. cereus in mitigating chronic Cd toxicity in shrimp by analyzing growth performance, hepatopancreatic Cd accumulation, pathology, as well as comprehensive hepatopancreatic transcriptomics and metabolomics in Litopenaeus vannamei. The results showed that shrimp's growth inhibition, hepatopancreatic Cd accumulation and physiological structure damage in B. cereus+chronic Cd group were effectively alleviated compared with the chronic Cd treatment group. The pathways related to amino acid metabolism, glycolipid metabolism, immune response, and antioxidant stress were significantly activated in the B. cereus+chronic Cd group, including glycolysis, pentose phosphate pathway, oxidative phosphorylation, biosynthesis of amino acids, and biosynthesis of unsaturated fatty acids pathways. The key differentially expressed genes (e.g., macrophage migration inhibitory factor, glycine cleavage system H protein, glycine dehydrogenase, phosphoglucomutase-2, asparaginase, ATP synthase subunit, cytochrome c, and 4-hydroxyphenylpyruvate dioxygenase) and metabolites (e.g., L-leucine, D-ribose, gluconic acid, 6-Phosphogluconic acid, sedoheptulose 7-phosphate, 1-Kestose, glyceric acid, arachidic acid, prostaglandins, 12-Keto-tetrahydro-leukotriene B4, and gamma-glutamylcysteine) associated with the above pathways were significantly altered. This study demonstrated that B. cereus is an effective mitigator for the treatment of chronic Cd poisoning in shrimp. B. cereus may play a role in alleviating the toxicity of Cd by enhancing the antioxidant performance, immune defense ability, metabolic stability, and energy demand regulation of shrimp. The study provides reference materials for the study of B. cereus in alleviating Cd toxicity of shrimp and broadens the application of probiotics in treating HM toxicity.


Asunto(s)
Bacillus cereus , Cadmio , Penaeidae , Transcriptoma , Contaminantes Químicos del Agua , Animales , Bacillus cereus/efectos de los fármacos , Cadmio/toxicidad , Penaeidae/efectos de los fármacos , Penaeidae/microbiología , Contaminantes Químicos del Agua/toxicidad , Transcriptoma/efectos de los fármacos , Metabolómica , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/patología , Hepatopáncreas/metabolismo
10.
Chem Commun (Camb) ; 60(73): 10029-10032, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189044

RESUMEN

Fe2NiSe4@holey-graphene (FNS@HG) has been prepared by in situ growth and simultaneous perforation via a carbothermal reaction. The generation of nanoholes on the graphene sheets significantly reduced the diffusion distance of electrolyte ions, enhancing the rate capability of FNS@HG as an anode material for sodium-ion batteries.

11.
Front Immunol ; 15: 1420216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188723

RESUMEN

Background: The emergence of nanotechnology has injected new vigor into vaccine research. Nanovaccine research has witnessed exponential growth in recent years; yet, a comprehensive analysis of related publications has been notably absent. Objective: This study utilizes bibliometric methodologies to reveal the evolution of themes and the distribution of nanovaccine research. Methods: Using tools such as VOSviewer, CiteSpace, Scimago Graphica, Pajek, R-bibliometrix, and R packages for the bibliometric analysis and visualization of literature retrieved from the Web of Science database. Results: Nanovaccine research commenced in 1981. The publication volume exponentially increased, notably in 2021. Leading contributors include the United States, the Chinese Academy of Sciences, the "Vaccine", and researcher Zhao Kai. Other significant contributors comprise China, the University of California, San Diego, Veronique Preat, the Journal of Controlled Release, and the National Natural Science Foundation of China. The USA functions as a central hub for international cooperation. Financial support plays a pivotal role in driving research advancements. Key themes in highly cited articles include vaccine carrier design, cancer vaccines, nanomaterial properties, and COVID-19 vaccines. Among 7402 keywords, the principal nanocarriers include Chitosan, virus-like particles, gold nanoparticles, PLGA, and lipid nanoparticles. Nanovaccine is primarily intended to address diseases including SARS-CoV-2, cancer, influenza, and HIV. Clustering analysis of co-citation networks identifies 9 primary clusters, vividly illustrating the evolution of research themes over different periods. Co-citation bursts indicate that cancer vaccines, COVID-19 vaccines, and mRNA vaccines are pivotal areas of focus for current and future research in nanovaccines. "candidate vaccines," "protein nanoparticle," "cationic lipids," "ionizable lipids," "machine learning," "long-term storage," "personalized cancer vaccines," "neoantigens," "outer membrane vesicles," "in situ nanovaccine," and "biomimetic nanotechnologies" stand out as research interest. Conclusions: This analysis emphasizes the increasing scholarly interest in nanovaccine research and highlights pivotal recent research themes such as cancer and COVID-19 vaccines, with lipid nanoparticle-mRNA vaccines leading novel research directions.


Asunto(s)
Bibliometría , Nanoestructuras , Vacunas , Humanos , Vacunas/administración & dosificación , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Nanotecnología , SARS-CoV-2/inmunología
12.
Proc Natl Acad Sci U S A ; 121(34): e2402262121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145931

RESUMEN

Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.


Asunto(s)
ADN de Cadena Simple , Recombinasa Rad51 , Reparación del ADN por Recombinación , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Unión Proteica
13.
Curr Drug Metab ; 25(4): 288-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005121

RESUMEN

BACKGROUND: The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear. METHODS: This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation. RESULTS: Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity. CONCLUSION: In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas Dependientes de GMP Cíclico , GMP Cíclico , Glucocorticoides , Osteoblastos , Osteoporosis , Purinas , Animales , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , GMP Cíclico/metabolismo , Ratones , Diferenciación Celular/efectos de los fármacos , Femenino , Purinas/farmacología , Glucocorticoides/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Furocumarinas/farmacología , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
14.
Front Public Health ; 12: 1379767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841684

RESUMEN

Introduction: The prevalence of dental caries (DC) among students in developing countries has increased at an alarming rate, and nutritional status has been shown to be associated with DC in children and adolescents with inconsistent conclusions. We aimed to understand the trends of DC prevalence in students aged 7, 9, 12, and 14 years and to explore the relationship between DC prevalence and nutritional status. Methods: We recruited 16,199 students aged 7, 9, 12, and 14 years in China by multi-stage, stratified, random sampling methods from 2010 to 2019. Permanent caries were measured using the Decay, Loss, and Filling (DMF) index and prevalence rate. Deciduous caries were measured using the decay, loss, and filling (dmf) index and prevalence rate. Nutritional status was assessed using body mass index (BMI) and hemoglobin levels. Logistic regression analysis was used to assess the association between nutritional status and the DC prevalence in children and adolescents, incorporating information concerning family-related factors. Results: The results indicated that DC prevalence increased from 39.75% in 2010 to 53.21% in 2019 in Henan province, with deciduous teeth and permanent teeth being 45.96 and 27.18%, respectively, in 2019. The total caries rate decreased with age (p < 0.05), and the caries rate of girls was higher than that of boys in 2019 (55.75% vs. 50.67%) (p < 0.001). The prevalence of dental caries among primary and secondary school students in areas with medium economic aggregate was the highest, followed by cities with the best economic development level, and cities with low economic levels have a lower prevalence of dental caries. The dental caries prevalence was negatively correlated with body mass index. In the fully adjusted model, underweight children had a higher caries prevalence (OR = 1.10, 95%CI: 0.86-1.41). Children with anemia had a higher prevalence of dental caries (OR = 1.18, 95%CI: 0.98-1.42). Conclusion: The DC prevalence of students in Henan Province was high, with a tendency to increase. Females, young individuals, and those with a higher economic level showed a positive correlation with the prevalence of caries. In the process of economic development, particular attention should be paid to early childhood caries prevention. Nutritional status should be taken seriously among children and adolescents, and the oral health system should be improved to keep pace with economic development.


Asunto(s)
Caries Dental , Estado Nutricional , Estudiantes , Humanos , Caries Dental/epidemiología , China/epidemiología , Femenino , Masculino , Niño , Adolescente , Prevalencia , Estudios Retrospectivos , Estudiantes/estadística & datos numéricos , Índice de Masa Corporal , Encuestas y Cuestionarios , Índice CPO , Pueblos del Este de Asia
15.
ACS Appl Mater Interfaces ; 16(27): 35114-35122, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38941158

RESUMEN

The cathode material Na4Fe3(PO4)2P2O7 (NFPP) has shown great potential for sodium-ion batteries (SIBs) due to its cost-effectiveness, prolonged cycle life, and high theoretical capacity. However, the practical large-scale production of NFPP is hindered by its poor intrinsic electron conductivity and the presence of a NaFePO4 impurity. In this study, we propose a mutually reinforcing approach involving Ti doping, mechanical nano treatment, and in situ carbon coating to produce Ti-NFPP via the solid-state methods of synthesis. Ti doping strengthens the covalent Fe-O interaction, hence accelerating the electron transfer and the redox reactions Fe2+/Fe3+. In situ carbon coating improves electrical conductivity and allows for accommodating the volumetric variation. Nanosized treatment promotes the uniform progression of solid-state reactions. The synthesized Na4Fe2.98Ti0.01(PO4)2P2O7 material (Ti-NFPP) exhibits promising electrochemical properties with an initial discharge specific capacity of 112.5 mA h g-1 at 0.1 C. A volumetric change of only 2.98% was observed during the de/sodiation process, indicating an enhanced reversibility of the crystal lattice. Moreover, it demonstrates exceptional cycling stability with a capacity retention rate of 97.2 mA h g-1 at 10 C over 5000 cycles. These findings offer a promising pathway for the large-scale production of Ti-NFPP in SIBs.

16.
J Colloid Interface Sci ; 672: 43-52, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824687

RESUMEN

The natural abundance of sodium has fostered the development of sodium-ion batteries for large-scale energy storage. However, the low capacity of the anodes hinders their future application. Herein, carbon-encapsulated MnSe-FeSe nanorods (MnSe-FeSe@C) have been fabricated by the in-situ transformation from polydopamine-coated MnO(OH)-Fe2O3. The heterostructure constructed by MnSe and FeSe nanocrystals induces the formation of built-in electric fields, accelerating electron transfer and ion diffusion, thereby improving reaction kinetics. In addition, carbon enclosure can buffer the volumetric stress and enhance the electrical conductivity. These aspects cooperatively endow the anode with superior cycling stability and distinguished rate performance. Specifically, the discharge capacity of MnSe-FeSe@C reaches 414.3 mA h g-1 at 0.1 A g-1 and 388.8 mA h g-1 even at a high current density of 5.0 A g-1. In addition, it still retains a high reversible capacity of 449.2 mA h g-1 after 700 long cycles at 1.0 A g-1. Further, the ab initio calculation has been employed to authenticate the existence of the built-in electric field by Bader charge, indicating that 0.24 electrons in MnSe were transferred to FeSe. The in-situ XRD has been used to evaluate the phase transition during the charging/discharging process, revealing the sodium ion storage mechanism. The construction of heterostructure material paves a new way to design performance-enhanced anode materials for sodium-ion batteries.

17.
Chemosphere ; 361: 142578, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857631

RESUMEN

Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 µg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 µg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 µg/L Cd2+, and Maribacter at 300 µg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 µg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.


Asunto(s)
Cadmio , Metaboloma , Penaeidae , Contaminantes Químicos del Agua , Animales , Cadmio/toxicidad , Penaeidae/efectos de los fármacos , Penaeidae/crecimiento & desarrollo , Penaeidae/microbiología , Penaeidae/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Metaboloma/efectos de los fármacos , Microbiota/efectos de los fármacos , Acuicultura , Microbioma Gastrointestinal/efectos de los fármacos , Branquias/metabolismo , Branquias/efectos de los fármacos
18.
Transl Psychiatry ; 14(1): 212, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802408

RESUMEN

Physical frailty and genetic factors are both risk factors for increased dementia; nevertheless, the joint effect remains unclear. This study aimed to investigated the long-term relationship between physical frailty, genetic risk, and dementia incidence. A total of 274,194 participants from the UK Biobank were included. We applied Cox proportional hazards regression models to estimate the association between physical frailty and genetic and dementia risks. Among the participants (146,574 females [53.45%]; mean age, 57.24 years), 3,353 (1.22%) new-onset dementia events were recorded. Compared to non-frailty, the hazard ratio (HR) for dementia incidence in prefrailty and frailty was 1.396 (95% confidence interval [CI], 1.294-1.506, P < 0.001) and 2.304 (95% CI, 2.030-2.616, P < 0.001), respectively. Compared to non-frailty and low polygenic risk score (PRS), the HR for dementia risk was 3.908 (95% CI, 3.051-5.006, P < 0.001) for frailty and high PRS. Furthermore, among the participants, slow walking speed (HR, 1.817; 95% CI, 1.640-2.014, P < 0.001), low physical activity (HR, 1.719; 95% CI, 1.545-1.912, P < 0.001), exhaustion (HR, 1.670; 95% CI, 1.502-1.856, P < 0.001), low grip strength (HR, 1.606; 95% CI, 1.479-1.744, P < 0.001), and weight loss (HR, 1.464; 95% CI, 1.328-1.615, P < 0.001) were independently associated with dementia risk compared to non-frailty. Particularly, precise modulation for different dementia genetic risk populations can also be identified due to differences in dementia risk resulting from the constitutive pattern of frailty in different genetic risk populations. In conclusion, both physical frailty and high genetic risk are significantly associated with higher dementia risk. Early intervention to modify frailty is beneficial for achieving primary and precise prevention of dementia, especially in those at high genetic risk.


Asunto(s)
Demencia , Fragilidad , Predisposición Genética a la Enfermedad , Humanos , Femenino , Masculino , Demencia/genética , Demencia/epidemiología , Fragilidad/genética , Fragilidad/epidemiología , Persona de Mediana Edad , Estudios Prospectivos , Incidencia , Anciano , Factores de Riesgo , Reino Unido/epidemiología , Modelos de Riesgos Proporcionales
19.
RSC Adv ; 14(24): 16624-16628, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784423

RESUMEN

Herein, we report a one-pot approach to diarylamines through the reductive homocoupling of nitroaromatics, employing triethylsilane as the reducing agent and Pd/NHC as the catalyst. This method enables nitroaromatics to serve both as electrophilic reagents and as precursors of nucleophilic reagents, allowing for the direct preparation of diarylamines without the need to isolate aromatic primary amines.

20.
Eur J Pharmacol ; 972: 176553, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574838

RESUMEN

Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.


Asunto(s)
Benzamidas , Ferroptosis , Microglía , Factor 2 Relacionado con NF-E2 , Pirroles , Daño por Reperfusión , Animales , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Línea Celular , Transporte Activo de Núcleo Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...