Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
Microsyst Nanoeng ; 10(1): 121, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214959

RESUMEN

The chip-scale hybrid optical pumping spin-exchange relaxation-free (SERF) atomic magnetometer with a single-beam arrangement has prominent applications in biomagnetic measurements because of its outstanding features, including ultrahigh sensitivity, an enhanced signal-to-noise ratio, homogeneous spin polarization and a much simpler optical configuration than other devices. In this work, a miniaturized single-beam hybrid optical pumping SERF atomic magnetometer based on a microfabricated atomic vapor cell is demonstrated. Although the optically thin Cs atoms are spin-polarized, the dense Rb atoms determine the experimental results. The enhanced signal strength and narrowed resonance linewidth are experimentally proven, which shows the superiority of the proposed magnetometer scheme. By using a differential detection scheme, we effectively suppress optical noise with an approximate five-fold improvement. Moreover, the cell temperature markedly affects the performance of the magnetometer. We systematically investigate the effects of temperature on the magnetometer parameters. The theoretical basis for these effects is explained in detail. The developed miniaturized magnetometer has an optimal magnetic sensitivity of 20 fT/Hz1/2. The presented work provides a foundation for the chip-scale integration of ultrahighly sensitive quantum magnetometers that can be used for forward-looking magnetocardiography (MCG) and magnetoencephalography (MEG) applications.

2.
Microorganisms ; 12(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203566

RESUMEN

Bacillus velezensis is a promising candidate for biocontrol applications. A common second messenger molecule, bis-(3,5)-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has the ability to regulate a range of physiological functions that impact the effectiveness of biocontrol. However, the status of the c-di-GMP signaling pathway in biocontrol strain LQ-3 remains unknown. Strain LQ-3, which was isolated from wheat rhizosphere soil, has shown effective control of wheat sharp eyespot and has been identified as B. velezensis through whole-genome sequencing analyses. In this study, we investigated the intracellular c-di-GMP signaling pathway of LQ-3 and further performed a comparative genomic analysis of LQ-3 and 29 other B. velezensis strains. The results revealed the presence of four proteins containing the GGDEF domain, which is the conserved domain for c-di-GMP synthesis enzymes. Additionally, two proteins were identified with the EAL domain, which represents the conserved domain for c-di-GMP degradation enzymes. Furthermore, one protein was found to possess a PilZ domain, indicative of the conserved domain for c-di-GMP receptors in LQ-3. These proteins are called DgcK, DgcP, YybT, YdaK, PdeH, YkuI, and DgrA, respectively; they are distributed in a similar manner across the strains and belong to the signal transduction family. We selected five genes from the aforementioned seven genes for further study, excluding YybT and DgrA. They all play a role in regulating the motility, biofilm formation, and colonization of LQ-3. This study reveals the c-di-GMP signaling pathway associated with biocontrol features in B. velezensis LQ-3, providing guidance for the prevention and control of wheat sharp eyespot by LQ-3.

3.
Gynecol Endocrinol ; 40(1): 2381504, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39034637

RESUMEN

Endometriosis is a common gynecological condition in women of childbearing age that causes symptoms such as menstrual changes and dysmenorrhea, and is also a major cause of infertility. Therefore, women with endometriosis usually need to use assisted reproductive technology (ART), such as in vitro fertilization or intracytoplasmic sperm injection, to increase their chances of conceiving. Numerous clinical observations and studies have indicated that endometriosis can affect the success of ART, such that women with endometriosis who use ART have a lower live-birth rate than those without endometriosis who use ART. Therefore, this article reviews the impact of various controlled ovarian hyperstimulation protocols and surgery on the pregnancy outcomes of women with endometriosis using ART to explore the selection of individualized treatment.


Asunto(s)
Endometriosis , Infertilidad Femenina , Inducción de la Ovulación , Resultado del Embarazo , Humanos , Femenino , Embarazo , Endometriosis/cirugía , Endometriosis/complicaciones , Inducción de la Ovulación/métodos , Infertilidad Femenina/terapia , Infertilidad Femenina/etiología , Índice de Embarazo , Técnicas Reproductivas Asistidas , Fertilización In Vitro/métodos
4.
Food Chem ; 457: 140120, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936126

RESUMEN

Bimetallic MOF derivatives have shown excellent performance as nano-enzymes in the field of catalysis. Herein, PdCo oxide nanoflowers with three-dimensional flower were prepared by a simple pyrolysis method on a precursor of bimetallic PdCo-MOF. PdCoOx showed excellent peroxidase mimic activity, which could significantly promote the oxidation of TMB by H2O2. Compared with CoOx, the peroxidase mimic activity of the optimized PdCoOx-300 increased by 2.41-fold. PdCoOx-300 has high affinity for TMB and H2O2 with Km values of 0.16 mM and 2.11 mM, which are only 57.03% and 36.87% of HRP, respectively. The highly specific peroxidase mimic activity is conducive to the sensitive detection of H2O2, glucose and ascorbic acid with limit of detection of 10, 100 and 10 nM, respectively. Furthermore, the total antioxidant capacity in the actual beverage samples was conducted, which showed good anti-interference ability and recovery rate.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Estructuras Metalorgánicas , Peroxidasa , Antioxidantes/química , Estructuras Metalorgánicas/química , Peroxidasa/química , Peróxido de Hidrógeno/química , Paladio/química , Catálisis , Oxidación-Reducción , Cobalto/química , Nanoestructuras/química , Ácido Ascórbico/química , Ácido Ascórbico/análisis , Glucosa/química , Glucosa/análisis , Óxidos/química
5.
Foods ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38890947

RESUMEN

This study aimed to investigate the efficacy of supercritical CO2 (SC-CO2) extraction in enhancing the extraction rate, purity, and antioxidant activity of Indocalamus latifolius (Keng) McClure (Poaceae) leaf terpenoids (ILLTs). Crude extracts obtained from leaves were subjected to qualitative and quantitative analyses, revealing neophytadiene, phytol, ß-sitosterol, ß-amyrone, squalene, and friedelin as the primary terpenoid constituents, identified through gas chromatography-mass spectrometry (GC-MS). Compared with steam distillation extraction (SD), simultaneous distillation extraction (SDE), ultra-high pressure-assisted n-hexane extraction (UHPE-Hex), ultra-high pressure-assisted ethanol extraction (UHPE-EtOH), ultrasound-assisted n-hexane extraction (UE-Hex), and ultrasound-assisted ethanol extraction (UE-EtOH), SC-CO2 exhibited a superior ILLT extraction rate, purity, and antioxidant activity. Scanning electron microscopy (SEM) observations of the residues further revealed more severe damage to both the residues and their cell walls after SC-CO2 extraction. Under optimal parameters (4.5 h, 26 MPa, 39 °C, and 20% ethyl alcohol), the ILLT extraction rate with SC-CO2 reached 1.44 ± 0.12 mg/g, which was significantly higher than the rates obtained by the other six methods. The subsequent separation and purification using WelFlash C18-l, BUCHI-C18, and Sephadex LH-20 led to an increase in the purity of the six terpenoid components from 12.91% to 93.34%. Furthermore, the ILLTs demonstrated cytotoxicity against HepG2 cells with an IC50 value of 148.93 ± 9.93 µg/mL. Additionally, with increasing concentrations, the ILLTs exhibited an enhanced cellular antioxidant status, as evidenced by reductions in both reactive oxygen species (ROS) and malondialdehyde (MDA) levels.

6.
World J Clin Cases ; 12(17): 2976-2982, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38898850

RESUMEN

BACKGROUND: Diabetic foot ulcers (DFUs) are a common complication of diabetes, often leading to severe infections, amputations, and reduced quality of life. The current standard treatment protocols for DFUs have limitations in promoting efficient wound healing and preventing complications. A comprehensive treatment approach targeting multiple aspects of wound care may offer improved outcomes for patients with DFUs. The hypothesis of this study is that a comprehensive treatment protocol for DFUs will result in faster wound healing, reduced amputation rates, and improved overall patient outcomes compared to standard treatment protocols. AIM: To compare the efficacy and safety of a comprehensive treatment protocol for DFUs with those of the standard treatment protocol. METHODS: This retrospective study included 62 patients with DFUs, enrolled between January 2022 and January 2024, randomly assigned to the experimental (n = 32) or control (n = 30) group. The experimental group received a comprehensive treatment comprising blood circulation improvement, debridement, vacuum sealing drainage, recombinant human epidermal growth factor and anti-inflammatory dressing, and skin grafting. The control group received standard treatment, which included wound cleaning and dressing, antibiotics administration, and surgical debridement or amputation, if necessary. Time taken to reduce the white blood cell count, number of dressing changes, wound healing rate and time, and amputation rate were assessed. RESULTS: The experimental group exhibited significantly better outcomes than those of the control group in terms of the wound healing rate, wound healing time, and amputation rate. Additionally, the comprehensive treatment protocol was safe and well tolerated by the patients. CONCLUSION: Comprehensive treatment for DFUs is more effective than standard treatment, promoting granulation tissue growth, shortening hospitalization time, reducing pain and amputation rate, improving wound healing, and enhancing quality of life.

7.
J Org Chem ; 89(12): 8531-8536, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38838346

RESUMEN

An effective multicomponent reaction for the synthesis of 4-phosphorylated 4H-chromenes via a tandem phosphorylation/alkylation/cyclization/dehydration sequence with water as the only byproduct was developed. Extensive mechanistic investigations involving in situ NMR experiments, time control experiments, and in situ HRMS experiment allowed us to elucidate the order of each subreaction to arrive at a complete understanding of the underlying mechanism of this multicomponent reaction. Mechanistic data confirm that the reaction begins with a phospha-aldol-elimination, followed by addition of a ketone enolate, intermolecular alkylation, intramolecular cyclization, and dehydration under acidic conditions.

8.
EClinicalMedicine ; 72: 102626, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38756107

RESUMEN

Background: Previous trials of renal denervation (RDN) have been designed to investigate reduction of blood pressure (BP) as the primary efficacy endpoint using non-selective RDN without intraoperatively verified RDN success. It is an unmet clinical need to map renal nerves, selectively denervate renal sympathetic nerves, provide readouts for the interventionalists and avoid futile RDN. We aimed to examine the safety and efficacy of renal nerve mapping/selective renal denervation (msRDN) in patients with uncontrolled hypertension (HTN) and determine whether antihypertensive drug burden is reduced while office systolic BP (OSBP) is controlled to target level (<140 mmHg). Methods: We conducted a randomized, prospective, multicenter, single-blinded, sham-controlled trial. The study combined two efficacy endpoints at 6 months as primary outcomes: The control rate of patients with OSBP <140 mmHg (non-inferior outcome) and change in the composite index of antihypertensive drugs (Drug Index) in the treatment versus Sham group (superior outcome). This design avoids confounding from excess drug-taking in the Sham group. Antihypertensive drug burden was assessed by a composite index constructed as: Class N (number of classes of antihypertensive drugs) × (sum of doses). 15 hospitals in China participated in the study and 220 patients were enrolled in a 1:1 ratio (msRDN vs Sham). The key inclusion criteria included: age (18-65 years old), history of essential HTN (at least 6 months), heart rate (≥70 bpm), OSBP (≥150 mmHg and ≤180 mmHg), ambulatory BP monitoring (ABPM, 24-h SBP ≥130 mmHg or daytime SBP ≥135 mmHg or nighttime SBP ≥120 mmHg), renal artery stenosis (<50%) and renal function (eGFR >45 mL/min/1.73 m2). The catheter with both stimulation and ablation functions was inserted in the distal renal main artery. The RDN site (hot spot) was selected if SBP increased (≥5 mmHg) by intra-renal artery (RA) electrical stimulation; an adequate RDN was confirmed by repeated electronic stimulation if no increase in BP otherwise, a 2nd ablation was performed at the same site. At sites where there was decreased SBP (≥5 mmHg, cold spot) or no BP response (neutral spot) to stimulation, no ablation was performed. The mapping, ablation and confirmation procedure was repeated until the entire renal main artery had been tested then either treated or avoided. After msRDN, patients had to follow a predefined, vigorous drug titration regimen in order to achieve target OSBP (<140 mmHg). Drug adherence was monitored by liquid chromatography-tandem mass spectrometry analysis using urine. This study is registered with ClinicalTrials.gov (NCT02761811) and 5-year follow-up is ongoing. Findings: Between July 8, 2016 and February 23, 2022, 611 patients were consented, 220 patients were enrolled in the study who received standardized antihypertensive drug treatments (at least two drugs) for at least 28 days, presented OSBP ≥150 mmHg and ≤180 mmHg and met all inclusion and exclusion criteria. In left RA and right RA, mapped sites were 8.2 (3.0) and 8.0 (2.7), hot/ablated sites were 3.7 (1.4) and 4.0 (1.6), cold spots were 2.4 (2.6) and 2.0 (2.2), neutral spots were 2.0 (2.1) and 2.0 (2.1), respectively. Hot, cold and neutral spots was 48.0%, 27.5% and 24.4% of total mapped sites, respectively. At 6 M, the Control Rate of OSBP was comparable between msRDN and Sham group (95.4% vs 92.8%, p = 0.429), achieved non-inferiority margin -10% (2.69%; 95% CI -4.11%, 9.83%, p < 0.001 for non-inferiority); the change in Drug Index was significantly lower in msRDN group compared to Sham group (4.37 (6.65) vs 7.61 (10.31), p = 0.010) and superior to Sham group (-3.25; 95% CI -5.56, -0.94, p = 0.003), indicating msRDN patients need significantly fewer drugs to control OSBP <140 mmHg. 24-hour ambulatory SBP decreased from 146.8 (13.9) mmHg by 10.8 (14.1) mmHg, and from 149.8 (12.8) mmHg by 10.0 (14.0) mmHg in msRDN and Sham groups, respectively (p < 0.001 from Baseline; p > 0.05 between groups). Safety profiles were comparable between msRDN and Sham groups, demonstrating the safety and efficacy of renal mapping/selective RDN to treat uncontrolled HTN. Interpretation: The msRDN therapy achieved the goals of reducing the drug burden of HTN patients and controlling OSBP <140 mmHg, with only approximately four targeted ablations per renal main artery, much lower than in previous trials. Funding: SyMap Medical (Suzhou), LTD, Suzhou, China.

9.
J Sci Food Agric ; 104(12): 7536-7549, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747177

RESUMEN

BACKGROUND: To improve phytol bioavailability, a novel method of magnetic stirring and high-pressure homogenization (HPH) combination was used to prepare zein/fucoidan-coated phytol nanoliposomes (P-NL-ZF). The characterization, the simulated in vitro digestion, and the antioxidant activity of these phytol nanoliposomes from the different processes have been studied. RESULTS: Based on the results of dynamic light scattering (DLS) and gas chromatography-mass spectrometer (GC-MS) analysis, P-NL-ZF prepared through the combination of magnetic stirring and HPH exhibited superior encapsulation efficiency at 76.19% and demonstrated exceptional physicochemical stability under a series of conditions, including storage, pH, and ionic in comparison to single method. It was further confirmed that P-NL-ZF by magnetic stirring and HPH displayed a uniform distribution and regular shape through transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analysis showed that electrostatic interactions and hydrogen bonding were the primary driving forces for the formation of composite nanoliposomes. Additionally, an in vitro digestion study revealed that multilayer composite nanoliposomes displayed significant and favorable slow-release properties (58.21%) under gastrointestinal conditions compared with traditional nanoliposomes (82.36%) and free phytol (89.73%). The assessments of chemical and cell-based antioxidant activities demonstrated that the coating of zein/fucoidan on phytol nanoliposomes resulted in enhanced effectiveness in scavenging activity of ABTS free radical and hydroxyl radical and mitigating oxidative damage to HepG2 cells. CONCLUSION: Based on our studies, the promising delivery carrier of zein/fucoidan-coated nanoliposomes is contributed to the encapsulation of hydrophobic natural products and enhancement of their biological activity. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Liposomas , Nanopartículas , Fitol , Zeína , Antioxidantes/química , Antioxidantes/farmacología , Liposomas/química , Zeína/química , Fitol/química , Nanopartículas/química , Humanos , Tamaño de la Partícula , Estabilidad de Medicamentos , Composición de Medicamentos/métodos , Polisacáridos/química , Portadores de Fármacos/química , Liberación de Fármacos
10.
Langmuir ; 40(17): 9265-9279, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636094

RESUMEN

Heterogeneous catalytic systems with water as the solvent often have the disadvantage of cross-contamination, while concerns about the purification and workup of the aqueous phase after reactions are rare in the lab or industry. In this context, designing and developing the functional selective solid adsorbent and revealing the adsorption mechanism can provide a new strategy and guidelines for constructing supported heterogeneous catalysts to address these issues. Herein, we report the stable composite adsorbent (Fe/ATP@PPy: magnetic Fe3O4/attapulgite with the polypyrrole shell) that features an integrated multifunctional surface, which can effectively tune the selective adsorption processes for Cu2+, Co2+, and Ni2+ ions and nitrobenzene via the cooperative chemisorption/physisorption in an aqueous system. The adsorption experiments showed that Fe/ATP@PPy displayed significantly higher adsorption selectivity for Ni2+ than Cu2+ and Co2+ ions, especially which exhibited an approximate 100.00% removal for both Ni2+ ions and nitrobenzene in the mixture system with a low concentration. Furthermore, combined tracking adsorption of Ni2+ ions and X-ray photoelectron spectroscopy characterization confirmed that the effective adsorption occurs via ion transfer coordination; the pathway was further validated at the molecular level through theoretical modeling. In addition, the selective adsorption mechanism was proposed based on the adsorption experiment, characterization, and the corresponding density functional theory calculation.

11.
Protein J ; 43(3): 544-558, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581543

RESUMEN

To solve the large size faultiness of Oryza sativa recombinant human serum albumin nanoparticle (OsrHSA NP), the structural discrepancies between OsrHSA and plasma-derived human serum albumin (pdHSA) were analyzed deeply in this research. It demonstrated that there were some subtle structural discrepancies located in subdomain IA and IIA between OsrHSA and pdHSA, which included peptide backbone, disulphide bridge and some amino acids. Firstly, the structural discrepancies were investigated through literature comparison, it inferred that the structural discrepancies resulted from the fatty acid (FA) binding to OsrHSA at site 2 of subdomain IA and IIA. To form a cavity for accommodation of FA molecule in OsrHSA, the peptide backbone structure of subdomain IA and IIA would change, accompanied by the conformational transition of disulphide bridges and side chain structure change of some amino acids in subdomain IA and IIA. These alterations induced the exposure of tryptophan (Trp) and tyrosine (Tyr) residues in subdomain IA and IIA and the decrease of net negative charges of molecular surface. The former would promote more OsrHSA molecules aggregate, and the latter would weaken the electrostatic repulsion. As a result, the size of OsrHSA NP was more extensive than that of pdHSA NP (175.84 ± 15.63 nm vs. 31.67 ± 1.31 nm) when the concentration of Dimethyl Sulphoxide (DMSO) was 30% (v/v). In this study, the experimental scheme of OsrHSA NP preparation was improved. There were two changes in the enhanced preparation scheme: pH 8.2 PBS buffer and 63% DMSO. It indicated that the improved OsrHSA NP carrier was comparable to the pdHSA NP carrier. The size and drug loading of paclitaxel-loaded improved OsrHSA NP were 53.57 ± 3.63 nm and 7.25 ± 0.46% (w/w), and those of docetaxel-loaded improved OsrHSA NP were 44.75 ± 2.26 nm and 8.43 ± 0.74% (w/w). Moreover, both NPs exhibited good stability for 168 h at 7.4 pH values. It is established that the improved OsrHSA NP is comparable to the pdHSA NP as a taxane delivery system.


Asunto(s)
Nanopartículas , Oryza , Proteínas Recombinantes , Albúmina Sérica Humana , Humanos , Oryza/química , Albúmina Sérica Humana/química , Proteínas Recombinantes/química , Nanopartículas/química , Taxoides/química , Sistemas de Liberación de Medicamentos
12.
Tissue Cell ; 88: 102341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479189

RESUMEN

Cigarette smoke extract (CSE) is known as a significant contributor to chronic obstructive pulmonary disease (COPD). Propofol, an anesthetic agent, has been studied for its potential protective effects against lung damage. This study aimed to elucidate the protective mechanisms of propofol against CSE-induced damage in human bronchial epithelial 16HBE cells. In CSE-induced 16HBE cells treated by propofol with or without transfection of nuclear factor erythroid 2-related factor 2 (Nrf2) interference plasmids, CCK-8 assay and lactate dehydrogenase (LDH) assay evaluated cytotoxicity. TUNEL assay and Western blot appraised cell apoptosis. ELISA and relevant assay kits severally measured inflammatory and oxidative stress levels. DCFH-DA fluorescent probe detected intracellular reactive oxygen species (ROS) activity. Immunofluorescence staining and Western blot estimated pyroptosis. Also, Western blot analyzed the expression of Nrf2/NLR family pyrin domain containing 3 (NLRP3) signaling-related proteins. Propofol was found to enhance the viability, reduce LDH release, and alleviate the apoptosis, inflammatory response, oxidative stress and pyroptosis in CSE-induced 16HBE cells in a concentration-dependent manner. Meanwhile, propofol decreased NLRP3 expression while raised Nrf2 expression. Further, after Nrf2 was silenced, the impacts of propofol on Nrf2/NLRP3 signaling, LDH release, apoptosis, inflammatory response, oxidative stress and pyroptosis in CSE-exposed 16HBE cells were eliminated. Conclusively, propofol may exert protective effects against CSE-induced damage in 16HBE cells, partly through the modulation of the Nrf2/NLRP3 signaling pathway, suggesting a potential therapeutic role for propofol in CSE-induced bronchial epithelial cell damage.


Asunto(s)
Bronquios , Células Epiteliales , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Propofol , Transducción de Señal , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Propofol/farmacología , Transducción de Señal/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Bronquios/metabolismo , Bronquios/efectos de los fármacos , Bronquios/patología , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Humo/efectos adversos , Apoptosis/efectos de los fármacos , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fumar Cigarrillos/efectos adversos
13.
Mol Plant ; 17(4): 614-630, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454602

RESUMEN

The infection of host plants by many different viruses causes reactive oxygen species (ROS) accumulation and yellowing symptoms, but the mechanisms through which plant viruses counteract ROS-mediated immunity to facilitate infection and symptom development have not been fully elucidated. Most plant viruses are transmitted by insect vectors in the field, but the molecular mechanisms underlying virus‒host-insect interactions are unclear. In this study, we investigated the interactions among wheat, barley yellow dwarf virus (BYDV), and its aphid vector and found that the BYDV movement protein (MP) interacts with both wheat catalases (CATs) and the 26S proteasome ubiquitin receptor non-ATPase regulatory subunit 2 homolog (PSMD2) to facilitate the 26S proteasome-mediated degradation of CATs, promoting viral infection, disease symptom development, and aphid transmission. Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs, which leading to increased accumulation of ROS and thereby enhanced viral infection. Interestingly, transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids. Consistent with this observation, silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids. In contrast, transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV. Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner. Collectively, our study reveals a molecular mechanism by which a plant virus manipulates the ROS production system of host plants to facilitate viral infection and transmission, shedding new light on the sophisticated interactions among viruses, host plants, and insect vectors.


Asunto(s)
Áfidos , Luteovirus , Complejo de la Endopetidasa Proteasomal , Virosis , Animales , Triticum , Áfidos/genética , Catalasa , Proteínas Virales , Especies Reactivas de Oxígeno , Luteovirus/genética , Plantas Modificadas Genéticamente , Enfermedades de las Plantas
14.
Molecules ; 29(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338318

RESUMEN

Theoretical and experimental investigations have shown that biochar, following KOH activation, enhances the efficiency of NO removal. Similarly, NaOH activation also improves NO removal efficiency, although the underlying mechanism remains unclear. In this study, zigzag configurations were employed as biochar models. Density functional theory (DFT) was utilized to examine how Li and Na single adsorption and OH co-adsorption affect the reaction pathways of NO reduction on the biochar surface. The rate constants for all reaction-determining steps (RDSs) within a temperature range of 200 to 1000 K were calculated using conventional transition state theory (TST). The results indicate a decrease in the activation energy for NO reduction reactions on biochar when activated by Li and Na adsorption, thus highlighting their beneficial role in NO reduction. Compared to the case with Na activation, Li-activated biochar exhibited superior performance in terms of the NO elimination rate. Furthermore, upon the adsorption of the OH functional group onto the Li-decorated and Na-decorated biochar models (LiOH-decorated and NaOH-decorated chars), the RDS energy barriers were higher than those of Li and Na single adsorption but easily overcome, suggesting effective NO reduction. In conclusion, Li-decorated biochar showed the highest reactivity due to its low RDS barrier and exothermic reaction on the surface.

15.
Nature ; 626(8000): 779-784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383626

RESUMEN

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

16.
Clin Neurol Neurosurg ; 237: 108154, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38330803

RESUMEN

OBJECTIVE: To determine whether adiponectin levels and the risk of trigeminal neuralgia (TN) were causally related, a two-sample Mendelian Randomization (MR) study design was used. METHODS: We obtained data regarding adiponectin from the UK Biobank genome wide association studies (GWAS) (n = 39,883) as the exposure and TN, using GWAS summary statistics generated from FinnGen, (total n = 195 847 159; case = 800, control = 195 047) as the outcome. We conducted a two-sample Mendelian randomization analysis employing inverse variance-weighted (IVW), MR-Egger regression, weighted median, and weighted mode analyses. RESULTS: We selected 14 single nucleotide polymorphisms (SNPs) with genome-wide significance from the GWAS on adiponectin as instrumental variables. Based on the IVW method, a causal association between adiponectin levels and TN was evidenced (OR= 0.577, 95 %CI: 0.393-0.847). MR-Egger regression revealed that directional pleiotropy was unlikely to be biasing the result (intercept = -0.01; P = 0.663), but it showed no causal association between adiponectin and TN (OR=0.627, 95 %CI: 0.369-1.067). However, the weighted median (OR=0.569, 95 %CI: 0.353-0.917) and Weighted mode (OR= 0.586, 95 %CI: 0.376-0.916) approach yielded evidence of a causal association between adiponectin and TN. Cochran's Q-statistics and funnel plots indicated no evidence of heterogeneity or asymmetry, indicating no directional pleiotropy. CONCLUSION: The results of the MR analysis suggested that adiponectin may be causally associated with an increased TN risk.


Asunto(s)
Adiponectina , Neuralgia del Trigémino , Humanos , Adiponectina/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neuralgia del Trigémino/genética , Causalidad
17.
Nanomaterials (Basel) ; 14(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38334587

RESUMEN

Hybrid nanofluids have many real-world applications. Research has shown that mixed nanofluids facilitate heat transfer better than nanofluids with one type of nanoparticle. New applications for this type of material include microfluidics, dynamic sealing, and heat dissipation. In this study, we began by placing copper into H2O to prepare a Cu-H2O nanofluid. Next, Cu-H2O was combined with Al2O3 to create a Cu-Al2O3-H2O hybrid nanofluid. In this article, we present an analytical study of the estimated flows and heat transfer of incompressible three-dimensional magnetohydrodynamic hybrid nanofluids in the boundary layer. The application of similarity transformations converts the interconnected governing partial differential equations of the problem into a set of ordinary differential equations. Utilizing the homotopy analysis method (HAM), a uniformly effective series solution was obtained for the entire spatial region of 0 < η < ∞. The errors in the HAM calculation are smaller than 1 × 10-9 when compared to the results from the references. The volume fractions of the hybrid nanofluid and magnetic fields have significant impacts on the velocity and temperature profiles. The appearance of magnetic fields can alter the properties of hybrid nanofluids, thereby altering the local reduced friction coefficient and Nusselt numbers. As the volume fractions of nanoparticles increase, the effective viscosity of the hybrid nanofluid typically increases, resulting in an increase in the local skin friction coefficient. The increased interaction between the nanoparticles in the hybrid nanofluid leads to a decrease in the Nusselt number distribution.

18.
RSC Adv ; 14(6): 3757-3760, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38268541

RESUMEN

An efficient method has been developed for reacting dialkyl H-phosphonates or diarylphosphine oxides with alcohols for constructing C-P bonds. This reaction was catalyzed by Lewis acid and involved nucleophilic substitution. A series of diphenylphosphonates and diphenylphosphine oxides were obtained, from the phosphorylation of alcohols, with good-to-excellent yields.

19.
J Hazard Mater ; 465: 133365, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38163407

RESUMEN

The molecular mechanisms underlying high and low cadmium (Cd) accumulation in hot pepper cultivars remain unclear. In this study, comparative transcriptome analysis of root between high-Cd (J) and low-Cd (Z) cultivars was conducted under hydroponic cultivation with 0 and 0.4 mg/L Cd, respectively. The results showed that J enhanced the root uptake of Cd by elevating the expression of Nramp5 and counteracting Cd toxicity by increasing the expression of genes, such as NIR1, GLN1, and IAA9. Z reduced Cd accumulation by enhancing the cell wall lignin synthesis genes PAL, COMT, 4CL, LAC, and POD and the Cd transporters ABC, MTP1, and DTX1. Elevated expression of genes related to sulfur metabolism was observed in Z, potentially contributing to its ability to detoxify Cd. To investigate the function of CaCOMT1, an Arabidopsis thaliana overexpression line (OE-CaCOMT1) was constructed. The results revealed that OE-CaCOMT1 drastically increased the lignin content by 38-42% and reduced the translocation of Cd to the aboveground parts by 32%. This study provides comprehensive insights into the mechanisms underlying Cd accumulation in hot pepper cultivars using transcriptome analysis. Moreover, this study elucidates the critical function of CaCOMT1, providing a theoretical foundation for the production of low-Cd vegetables for food safety.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Capsicum , Contaminantes del Suelo , Cadmio/metabolismo , Capsicum/genética , Capsicum/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Contaminantes del Suelo/metabolismo , Nitrito Reductasas/metabolismo , Proteínas de Arabidopsis/genética
20.
Biochem Genet ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233694

RESUMEN

The aim of this study was to examine the expression changes of H2S, IGF-1, and GH in traumatic brain injury (TBI) patients and to detect their neuroprotective functions after TBI. In this study, we first collected cerebrospinal fluid (CSF) and plasma from TBI patients at different times after injury and evaluated the concentrations of H2S, IGF-1, and GH. In vitro studies were using the scratch-induced injury model and cell-cell interaction model (HT22 hippocampal neurons co-cultured with LPS-induced BV2 microglia cells). In vivo studies were using the controlled cortical impact (CCI) model in mice. Cell viability was assessed by CCK-8 assay. Pro-inflammatory cytokines expression was determined by qRT-PCR, ELISA, and nitric oxide production. Western blot was performed to assess the expression of CBS, CSE, IGF-1, and GHRH. Moreover, the recovery of TBI mice was evaluated for behavioral function by applying the modified Neurological Severity Score (mNSS), the Rotarod test, and the Morris water maze. We discovered that serum H2S, CSF H2S, and serum IGF-1 concentrations were all adversely associated with the severity of the TBI, while the concentrations of IGF-1 and GH in CSF and GH in the serum were all positively related to TBI severity. Experiments in vitro and in vivo indicated that treatment with NaHS (H2S donor), IGF-1, and MR-409 (GHRH agonist) showed protective effects after TBI. This study gives novel information on the functions of H2S, IGF-1, and GH in TBI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...