Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1277489, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904728

RESUMEN

Once thought to be non-naturally occurring, D-amino acids (DAAs) have in recent years been revealed to play a wide range of physiological roles across the tree of life, including in human systems. Synthetic biologists have since exploited DAAs' unique biophysical properties to generate peptides and proteins with novel or enhanced functions. However, while peptides and small proteins containing DAAs can be efficiently prepared in vitro, producing large-sized heterochiral proteins poses as a major challenge mainly due to absence of pre-existing DAA translational machinery and presence of endogenous chiral discriminators. Based on our previous work demonstrating pyrrolysyl-tRNA synthetase's (PylRS') remarkable substrate polyspecificity, this work attempts to increase PylRS' ability in directly charging tRNAPyl with D-phenylalanine analogs (DFAs). We here report a novel, polyspecific Methanosarcina mazei PylRS mutant, DFRS2, capable of incorporating DFAs into proteins via ribosomal synthesis in vivo. To validate its utility, in vivo translational DAA substitution were performed in superfolder green fluorescent protein and human heavy chain ferritin, successfully altering both proteins' physiochemical properties. Furthermore, aminoacylation kinetic assays further demonstrated aminoacylation of DFAs by DFRS2 in vitro.

2.
Proc Natl Acad Sci U S A ; 120(8): e2219758120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787361

RESUMEN

Synthetic biology tools for regulating gene expression have many useful biotechnology and therapeutic applications. Most tools developed for this purpose control gene expression at the level of transcription, and relatively few methods are available for regulating gene expression at the translational level. Here, we design and engineer split orthogonal aminoacyl-tRNA synthetases (o-aaRS) as unique tools to control gene translation in bacteria and mammalian cells. Using chemically induced dimerization domains, we developed split o-aaRSs that mediate gene expression by conditionally suppressing stop codons in the presence of the small molecules rapamycin and abscisic acid. By activating o-aaRSs, these molecular switches induce stop codon suppression, and in their absence stop codon suppression is turned off. We demonstrate, in Escherichia coli and in human cells, that split o-aaRSs function as genetically encoded AND gates where stop codon suppression is controlled by two distinct molecular inputs. In addition, we show that split o-aaRSs can be used as versatile biosensors to detect therapeutically relevant protein-protein interactions, including those involved in cancer, and those that mediate severe acute respiratory syndrome-coronavirus-2 infection.


Asunto(s)
Aminoacil-ARNt Sintetasas , Codón de Terminación , Humanos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Ligasas/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/genética , Escherichia coli
3.
J Biol Chem ; 298(11): 102521, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152750

RESUMEN

The pyrrolysyl-tRNA synthetase (PylRS) facilitates the cotranslational installation of the 22nd amino acid pyrrolysine. Owing to its tolerance for diverse amino acid substrates, and its orthogonality in multiple organisms, PylRS has emerged as a major route to install noncanonical amino acids into proteins in living cells. Recently, a novel class of PylRS enzymes was identified in a subset of methanogenic archaea. Enzymes within this class (ΔPylSn) lack the N-terminal tRNA-binding domain that is widely conserved amongst PylRS enzymes, yet remain active and orthogonal in bacteria and eukaryotes. In this study, we use biochemical and in vivo UAG-readthrough assays to characterize the aminoacylation efficiency and substrate spectrum of a ΔPylSn class PylRS from the archaeon Candidatus Methanomethylophilus alvus. We show that, compared with the full-length enzyme from Methanosarcina mazei, the Ca. M. alvus PylRS displays reduced aminoacylation efficiency but an expanded amino acid substrate spectrum. To gain insight into the evolution of ΔPylSn enzymes, we performed molecular phylogeny using 156 PylRS and 105 pyrrolysine tRNA (tRNAPyl) sequences from diverse archaea and bacteria. This analysis suggests that the PylRS•tRNAPyl pair diverged before the evolution of the three domains of life, placing an early limit on the evolution of the Pyl-decoding trait. Furthermore, our results document the coevolutionary history of PylRS and tRNAPyl and reveal the emergence of tRNAPyl sequences with unique A73 and U73 discriminator bases. The orthogonality of these tRNAPyl species with the more common G73-containing tRNAPyl will enable future efforts to engineer PylRS systems for further genetic code expansion.


Asunto(s)
Aminoacil-ARNt Sintetasas , Archaea , Código Genético , Lisina , Aminoacil-ARNt Sintetasas/metabolismo , Archaea/enzimología , Archaea/genética , Lisina/análogos & derivados , Lisina/genética , Methanosarcina , ARN de Transferencia/genética
4.
J Agric Food Chem ; 70(32): 9941-9947, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35921143

RESUMEN

To transform cellulose from biomass into fermentable sugars for biofuel production requires efficient enzymatic degradation of cellulosic feedstocks. The recently discovered family of oxidative enzymes, lytic polysaccharide monooxygenase (LPMO), has a high potential for industrial biorefinery, but its energy efficiency and scalability still have room for improvement. Hematite (α-Fe2O3) can act as a photocatalyst by providing electrons to LPMO-catalyzed reactions, is low cost, and is found abundantly on the Earth's surface. Here, we designed a composite enzymatic photocatalysis-Fenton reaction system based on nano-α-Fe2O3. The feasibility of using α-Fe2O3 nanoparticles as a composite catalyst to facilitate LPMO-catalyzed cellulose oxidative degradation in water was tested. Furthermore, a light-induced Fenton reaction was integrated to increase the liquefaction yield of cellulose. The innovative approach finalized the cellulose degradation process with a total liquefaction yield of 93%. Nevertheless, the complex chemical reactions and products involved in this system require further investigation.


Asunto(s)
Celulosa , Oxigenasas de Función Mixta , Celulosa/metabolismo , Compuestos Férricos , Proteínas Fúngicas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo
5.
Front Chem ; 9: 779976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900939

RESUMEN

This study reports the application of expanding genetic codes in developing protein cage-based delivery systems. The evolved Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS)•tRNAPyl pairs derived from directed evolution are examined to probe their recognition for para-substituted phenylalanine analogs. The evolved MmPylRS, AzFRS, harboring a wide range of substrates, is further engineered at the C-terminal region into another variant, AzFRS-MS. AzFRS-MS shows suppression of the elevated sfGFP protein amount up to 10 TAG stop codons when charging p-azido-l-phenylalanine (AzF, 4), which allows the occurrence of click chemistry. Since protein nanocages used as drug delivery systems that encompass multiple drugs through a site-specific loading approach remain largely unexplored, as a proof of concept, the application of AzFRS-MS for the site-specific incorporation of AzF on human heavy chain ferritin (Ftn) is developed. The Ftn-4 conjugate is shown to be able to load multiple fluorescence dyes or a therapeutic agent, doxorubicin (Dox), through the strain-promoted azide-alkyne cycloaddition (SPAAC) click reaction. Aiming to selectively target Her2+ breast cancer cells, Ftn-4-DOX conjugates fused with a HER2 receptor recognition peptide, anti-Her2/neu peptide (AHNP), is developed and demonstrated to be able to deliver Dox into the cell and to prolong the drug release. This work presents another application of evolved MmPylRS systems, whose potential in developing a variety of protein conjugates is noteworthy.

6.
Molecules ; 25(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182242

RESUMEN

Ubiquitination is a versatile posttranslational modification that elicits signaling roles to impact on various cellular processes and disease states. The versatility is a result of the complexity of ubiquitin conjugates, ranging from a single ubiquitin monomer to polymers with different length and linkage types. Recent studies have revealed the abundant existence of branched ubiquitin chains in which one ubiquitin molecule is connected to two or more ubiquitin moieties in the same ubiquitin polymer. Compared to the homotypic ubiquitin chain, the branched chain is recognized or processed differently by readers and erasers of the ubiquitin system, respectively, resulting in a qualitative or quantitative alteration of the functional output. Furthermore, certain types of branched ubiquitination are induced by cellular stresses, implicating their important physiological role in stress adaption. In addition, the current chemical methodologies of solid phase peptide synthesis and expanding genetic code approach have been developed to synthesize different architectures of branched ubiquitin chains. The synthesized branched ubiquitin chains have shown their significance in understanding the topologies and binding partners of the branched chains. Here, we discuss the recent progresses on the detection, functional characterization and synthesis of branched ubiquitin chains as well as the future perspectives of this emerging field.


Asunto(s)
Polímeros/química , Ubiquitina/química , Ubiquitinación , Animales , Humanos , Espectrometría de Masas , Péptidos/química , Fosforilación , Complejo de la Endopetidasa Proteasomal/química , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Transducción de Señal
7.
Biochemistry ; 59(40): 3796-3801, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33006472

RESUMEN

Ubiquitination and SUMOylation of protein are crucial for various biological responses. The recent unraveling of cross-talk between SUMO and ubiquitin (Ub) has shown the pressing needs to develop the platform for the synthesis of Ub tagged SUMO2 dimers to decipher its biological functions. Still, the platforms for facile synthesis of dimers under native condition are less explored and remain major challenges. Here, we have developed the platform that can expeditiously synthesize all eight Ub tagged SUMO2 and SUMOylated proteins under native condition. Expanding genetic code (EGC) method was employed to incorporate Se-alkylselenocysteine at lysine positions. Oxidative selenoxide elimination generates the electrophilic center, dehydroalanine, which upon Michael addition with C-terminal modified ubiquitin, a nucleophile, yield Ub tagged SUMO2. The dimers were further interrogated with USP7, a SUMO2 deubiquitinase, which is involved in DNA repair, to understand specificity toward the Ub tagged SUMO2 dimer. Our results have shown that the C-terminal domain of USP7 is crucial for USP7 efficiency and selectivity for the Ub tagged SUMO2 dimer.


Asunto(s)
Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitina/metabolismo , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Especificidad por Sustrato , Sumoilación , Ubiquitina/química , Peptidasa Específica de Ubiquitina 7/química , Ubiquitinación
8.
Molecules ; 25(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992991

RESUMEN

In protein engineering and synthetic biology, Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRS), with its cognate tRNAPyl, is one of the most popular tools for site-specific incorporation of non-canonical amino acids (ncAAs). Numerous orthogonal pairs based on engineered MmPylRS variants have been developed during the last decade, enabling a substantial genetic code expansion, mainly with aliphatic pyrrolysine analogs. However, comparatively less progress has been made to expand the substrate range of MmPylRS towards aromatic amino acid residues. Therefore, we set to further expand the substrate scope of orthogonal translation by a semi-rational approach; redesigning the MmPylRS efficiency. Based on the randomization of residues from the binding pocket and tRNA binding domain, we identify three positions (V401, W417 and S193) crucial for ncAA specificity and enzyme activity. Their systematic mutagenesis enabled us to generate MmPylRS variants dedicated to tryptophan (such as ß-(1-Azulenyl)-l-alanine or 1-methyl-l-tryptophan) and tyrosine (mainly halogenated) analogs. Moreover, our strategy also significantly improves the orthogonal translation efficiency with the previously activated analog 3-benzothienyl-l-alanine. Our study revealed the engineering of both first shell and distant residues to modify substrate specificity as an important strategy to further expand our ability to discover and recruit new ncAAs for orthogonal translation.


Asunto(s)
Aminoácidos Aromáticos , Aminoacil-ARNt Sintetasas , Proteínas Bacterianas , Methanosarcina/enzimología , Biosíntesis de Proteínas , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Methanosarcina/genética , Mutagénesis Sitio-Dirigida , Ingeniería de Proteínas
9.
Biochemistry ; 59(24): 2205-2209, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32484330

RESUMEN

Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA have been evolved to generate genetically encoded noncanonical amino acids (ncAAs). Use of tryptophan (Trp) analogues with pyrrole ring modification for their spatial and polarity tuning in enzyme activity and substrate specificity is still limited. Herein, we report the application of an evolved PylRS, FOWRS2, for efficient incorporation of five Trp analogues into the deubiquitinase USP30 to decipher the role of W475 for diubiquitin selectivity. Structures of the five FOWRS-C/Trp analogue complexes at 1.7-2.5 Å resolution showed multiple ncAA binding modes. The W475 near the USP30 active site was replaced with Trp analogues, and the effect on the activity as well as the selectivity toward diubiquitin linkage types was examined. It was found that the Trp analogue with a formyl group attached to the nitrogen atom of the indole ring led to an improved activity of USP30 likely due to enhanced polar interactions and that another Trp analogue, 3-benzothienyl-l-alanine, induced a unique K6-specificity. Collectively, genetically encoded noncanonical Trp analogues by evolved PylRS·tRNACUAPyl pair unravel the spatial role of USP30-W475 in its diubiquitin selectivity.


Asunto(s)
Proteínas Mitocondriales/química , Tioléster Hidrolasas/química , Triptófano/análogos & derivados , Triptófano/química , Aminoacil-ARNt Sintetasas/química , Proteínas Arqueales/química , Dominio Catalítico , Humanos , Methanosarcina/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Triptófano/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-32322577

RESUMEN

The Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS)⋅tRNAPyl pair can be used to incorporate non-canonical amino acids (ncAAs) into proteins at installed amber stop codons. Although engineering of the PylRS active site generates diverse binding pockets, the substrate ranges are found similar in charging lysine and phenylalanine analogs. To expand the diversity of the ncAA side chains that can be incorporated via the PylRS⋅tRNAPyl pair, exploring remote interactions beyond the active site is an emerging approach in expanding the genetic code research. In this work, remote interactions between tRNAPyl, the tRNA binding domain of PylRS, and/or an introduced non-structured linker between the N- and C-terminus of PylRS were studied. The substrate range of the PylRS⋅tRNAPyl pair was visualized by producing sfGFP-UAG gene products, which also indicated amber suppression efficiencies and substrate specificity. The unstructured loop linking the N-terminal and C-terminal domains (CTDs) of PylRS has been suggested to regulate the interaction between PylRS and tRNAPyl. In exploring the detailed role of the loop region, different lengths of the linker were inserted into the junction between the N-terminal and the C-terminal domains of PylRS to unearth the impact on remote effects. Our findings suggest that the insertion of a moderate-length linker tunes the interface between PylRS and tRNAPyl and subsequently leads to improved suppression efficiencies. The suppression activity and the substrate specificity of PylRS were altered by introducing three mutations at or near the N-terminal domain of PylRS (N-PylRS). Using a N-PylRS⋅tRNAPyl pair, three ncAA substrates, two S-benzyl cysteine and a histidine analog, were incorporated into the protein site specifically.

11.
Nat Chem Biol ; 13(12): 1261-1266, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29035363

RESUMEN

Pyrrolysyl-tRNA synthetase (PylRS) is a major tool in genetic code expansion using noncanonical amino acids, yet its structure and function are not completely understood. Here we describe the crystal structure of the previously uncharacterized essential N-terminal domain of this unique enzyme in complex with tRNAPyl. This structure explains why PylRS remains orthogonal in a broad range of organisms, from bacteria to humans. The structure also illustrates why tRNAPyl recognition by PylRS is anticodon independent: the anticodon does not contact the enzyme. Then, using standard microbiological culture equipment, we established a new method for laboratory evolution-a noncontinuous counterpart of the previously developed phage-assisted continuous evolution. With this method, we evolved novel PylRS variants with enhanced activity and amino acid specificity. Finally, we employed an evolved PylRS variant to determine its N-terminal domain structure and show how its mutations improve PylRS activity in the genetic encoding of a noncanonical amino acid.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Lisina/análogos & derivados , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Cristalografía por Rayos X , Evolución Molecular Dirigida , Lisina/química , Lisina/metabolismo , Methanosarcina/enzimología , Modelos Moleculares
12.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt B): 3009-3015, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28288813

RESUMEN

BACKGROUND: Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNAHis recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNAHis pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. METHODS: E. coli was genetically engineered to use a C. crescentus HisRS•tRNAHis pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. RESULTS: A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNAHis pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNAHis pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNAHisCUA elevated its suppression efficiency by 2-fold. CONCLUSIONS: The C. crescentus HisRS•tRNAHis pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNAHis is orthogonal in MEOV1 cells. E. coli tRNAHisCUA is an efficient amber suppressor in MEOV1. GENERAL SIGNIFICANCE: We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Histidina-ARNt Ligasa/metabolismo , Ingeniería de Proteínas/métodos , ARN de Transferencia de Histidina/metabolismo , Clonación Molecular/métodos , Biblioteca de Genes , Ingeniería Genética/métodos , Histidina-ARNt Ligasa/genética , Mutagénesis Sitio-Dirigida , ARN de Transferencia de Histidina/genética
13.
ACS Chem Biol ; 11(12): 3305-3309, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27978711

RESUMEN

Histidine is a unique amino acid with an imidazole side chain in which both of the nitrogen atoms are capable of serving as a proton donor and proton acceptor in hydrogen bonding interactions. In order to probe the functional role of histidine involved in hydrogen bonding networks, fine-tuning the hydrogen bonding potential of the imidazole side chain is required but not feasible through traditional mutagenesis methods. Here, we show that two close mimetics of histidine, 3-methyl-histidine and thiazole alanine, can be genetically encoded using engineered pyrrolysine incorporation machinery. Replacement of the three histidine residues predicted to be involved in an extended charge-relay system in alanine racemase with 3-methyl-histidine or thiazole alanine shows a dramatic loss in the enzyme's catalytic efficiency, implying the role of this extended charge-relay system in activating the active site residue Y265, a general acid/base catalyst in the enzyme.


Asunto(s)
Alanina Racemasa/genética , Alanina Racemasa/metabolismo , Escherichia coli/enzimología , Histidina/genética , Mutagénesis Sitio-Dirigida , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina/análogos & derivados , Enlace de Hidrógeno , Lisina/análogos & derivados , Lisina/genética , Modelos Moleculares
14.
Nucleic Acids Res ; 43(22): 11061-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26582921

RESUMEN

Genetically encoded non-canonical amino acids are powerful tools of protein research and engineering; in particular they allow substitution of individual chemical groups or atoms in a protein of interest. One such amino acid is the tryptophan (Trp) analog 3-benzothienyl-l-alanine (Bta) with an imino-to-sulfur substitution in the five-membered ring. Unlike Trp, Bta is not capable of forming a hydrogen bond, but preserves other properties of a Trp residue. Here we present a pyrrolysyl-tRNA synthetase-derived, engineered enzyme BtaRS that enables efficient and site-specific Bta incorporation into proteins of interest in vivo. Furthermore, we report a 2.1 Å-resolution crystal structure of a BtaRS•Bta complex to show how BtaRS discriminates Bta from canonical amino acids, including Trp. To show utility in protein mutagenesis, we used BtaRS to introduce Bta to replace the Trp28 residue in the active site of Staphylococcus aureus thioredoxin. This experiment showed that not the hydrogen bond between residues Trp28 and Asp58, but the bulky aromatic side chain of Trp28 is important for active site maintenance. Collectively, our study provides a new and robust tool for checking the function of Trp in proteins.


Asunto(s)
Alanina/análogos & derivados , Staphylococcus aureus , Tiofenos/química , Tiorredoxinas/química , Triptófano/química , Alanina/química , Alanina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico , Cinética , Modelos Moleculares , Sondas Moleculares , Ingeniería de Proteínas , Staphylococcus aureus/genética , Tiofenos/metabolismo , Aminoacilación de ARN de Transferencia
15.
Nat Biotechnol ; 33(12): 1272-1279, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26571098

RESUMEN

Expansion of the genetic code with nonstandard amino acids (nsAAs) has enabled biosynthesis of proteins with diverse new chemistries. However, this technology has been largely restricted to proteins containing a single or few nsAA instances. Here we describe an in vivo evolution approach in a genomically recoded Escherichia coli strain for the selection of orthogonal translation systems capable of multi-site nsAA incorporation. We evolved chromosomal aminoacyl-tRNA synthetases (aaRSs) with up to 25-fold increased protein production for p-acetyl-L-phenylalanine and p-azido-L-phenylalanine (pAzF). We also evolved aaRSs with tunable specificities for 14 nsAAs, including an enzyme that efficiently charges pAzF while excluding 237 other nsAAs. These variants enabled production of elastin-like-polypeptides with 30 nsAA residues at high yields (∼50 mg/L) and high accuracy of incorporation (>95%). This approach to aaRS evolution should accelerate and expand our ability to produce functionalized proteins and sequence-defined polymers with diverse chemistries.

16.
Proc Natl Acad Sci U S A ; 111(47): 16724-9, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385624

RESUMEN

Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Evolución Molecular Dirigida , Lisina/metabolismo , Cinética
17.
Chembiochem ; 15(12): 1805-1809, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24890918

RESUMEN

We tested the substrate range of four wild-type E. coli aminoacyl-tRNA synthetases (AARSs) with a library of nonstandard amino acids (nsAAs). Although these AARSs could discriminate efficiently against the other canonical amino acids, they were able to use many nsAAs as substrates. Our results also show that E. coli tryptophanyl-tRNA synthetase (TrpRS) and tyrosyl-tRNA synthetase have overlapping substrate ranges. In addition, we found that the nature of the anticodon sequence of tRNA(Trp) altered the nsAA substrate range of TrpRS; this implies that the sequence of the anticodon affects the TrpRS amino acid binding pocket. These results highlight again that inherent AARS polyspecificity will be a major challenge in the aim of incorporating multiple different amino acids site-specifically into proteins.


Asunto(s)
Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/enzimología , Aminoácidos/química , Anticodón/genética , Anticodón/metabolismo , Conformación Molecular , Especificidad por Sustrato
19.
Chem Commun (Camb) ; 50(20): 2673-5, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24473369

RESUMEN

Thirteen novel non-canonical amino acids were synthesized and tested for suppression of an amber codon using a mutant pyrrolysyl-tRNA synthetase-tRNA(Pyl)(CUA) pair. Suppression was observed with varied efficiencies. One non-canonical amino acid in particular contains an azide that can be applied for site-selective protein labeling.


Asunto(s)
Aminoácidos/genética , Fenilalanina/genética , Codón de Terminación , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA