Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Technol ; : 1-13, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773903

RESUMEN

The increasing concentrations of heavy metals in livestock wastewater pose a serious threat to the environmental safety and human health, limiting its resource utilisation. In the present study, microalgae and nanoscale zero-valent iron were selected to construct a coupled system for copper-containing wastewater treatment. The addition of 50 mg·L-1 nanoscale zero-valent iron (50 nm) was the optimal value for the experiment, which could significantly increase the biomass of microalgae. In addition, nanoscale zero-valent iron stimulated microalgal secretion of extracellular polymeric substances, increasing the contents of binding sites, organic ligands, and functional groups on the microalgal surfaces and ultimately promoting the settling of microalgae and binding of heavy metals. The coupled system could quickly adapt to copper-containing wastewater of 10 mg·L-1, and the copper removal rate reached 94.99%. Adsorption and uptake by organisms, together with the contribution of zero-valent iron nanoparticles, are the major copper removal pathways. Overall, this work offers a novel technical solution for enhanced treatment of copper-containing livestock wastewater, which will help improve the efficiency and quality of wastewater treatment.

2.
Chemosphere ; 256: 127009, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32438127

RESUMEN

Finding an economical amendment, available in a steady supply, is needed to support the biodrying industrialization. This research developed a recyclable biodrying amendment (RBA) to condition the biodrying of sewage sludge. The pilot-scale treatment (TR), which included the addition of equivalent weights of RBA and sawdust as amendments, resulted in a higher pile temperature and longer thermophilic phase compared to the control (TC), which used only sawdust as an amendment. The final moisture content levels were below 50% with both TR and TC. The heat use efficiency for water evaporation was 72.2% and 73.0% in TR and TC, respectively. The activity of α-amylase and cellulose 1,4-ß-cellobiosidase increased during the thermophilic phase, while the activity of endo-1,4-ß-glucanase and endo-1,4-ß-xylanase decreased during the thermophilic phase with both TR and TC. The fourier-transform infrared spectra indicated that adding the RBA resulted in good biodegradability of the lipids, proteins, and polysaccharides. The humic acid to fulvic acid ratio in TR and TC increased from 0.33 (TR) and 0.35 (TC) on day 0-0.46 (TR) and 0.45 (TC) on day 21, indicating the humification process. The RBA recovery rate was 95.6% and can be reused. These findings highlight that adding RBA showed satisfactory biodrying performance, reduced the amendment cost, and the biodrying product could be incinerated without energy deficit.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Calor , Incineración , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/economía , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...