RESUMEN
Pleuropterus multiflorus root (PMR, Polygoni Multiflori Radix) is an herbal medicine widely used in East Asia, particularly China. However, the potential hepatotoxicity has hindered its rational and safe application of PMR in clinical practice. Recently, the hepatotoxic study of PMR have made great progress, especially drug metabolism and transport-mediated liver injury. In this review, we summarized the advancement of drug metabolism and transport regluated hepatic injury of PMR, pointed out the key role of drug metabolizing enzymes and transporters in regulating hepatic injury of PMR, and emphasized the main hepatotoxic substances, toxicity promoter, and hepatic toxic substance-toxicity promoter interactions in PMR. On this basis, the clinical prospect of preventing and treating hepatic injury of PMR from the perspective of metabolism and transporter was discussed, to provide a useful reference and theoretical basis for the prevention and treatment of hepatic injury of PMR.
RESUMEN
N6-Methyladenosine (m6A) is the most prevalent mRNA modification. Its biological function primarily relies on its "Reader" protein, such as YTHDC2. Previous studies have shown that YTHDC2 downregulation is a procarcinogenic phenomenon in lung adenocarcinoma (LUAD). However, further investigation is needed to understand the molecular mechanisms of downstream genes and the associated biological phenomena following YTHDC2 downregulation. Here, we found that YTHDC2 knockout upregulated exosome content in LUAD. Following YTHDC2 knockout, the mRNA levels of OAS family members (OASs) and IFIT family members (IFITs) also decreased; and inhibition of OASs and IFITs could promote exosome content. Several m6A modification sites on the NT domain of OASs and the TPR12 domain of IFITs were found to increase the stability of OASs and IFITs in a YTHDC2-dependent manner. OASs and IFITs affected exosome content through target genes including RAB5A, RAB7, and RAB11A, and three arginine (R) amino acids on IFITs were critical for combination IFITs with targeted RAB mRNAs and subsequent degradation. Simultaneously, OASs degraded targeted RABs through RNAseL. Additionally, mutual bindings between OASs and IFITs were critical for their target gene degradation. Collectively, the above findings might provide a theoretical basis for the treatment of LUAD patients with low YTHDC2 expression.
Asunto(s)
Adenocarcinoma del Pulmón , Exosomas , Neoplasias Pulmonares , Humanos , Exosomas/metabolismo , Exosomas/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Regulación hacia Arriba , Células A549 , Línea Celular Tumoral , ARN HelicasasRESUMEN
Milk vetch (Astragalus sinicus L.) returning and lime materials is employed as an effective strategy for remediating cadmium (Cd)-contaminated paddy fields. However, the combined effects of them on alleviating Cd pollution and the underlying mechanisms remain poorly explored. Therefore, this study investigated the impact of these combined treatments on soil properties, iron oxides, iron plaque, mineral elements, and amino acids through a field experiment. The following treatments were employed: lime (LM), limestone (LS), milk vetch (MV), MV + LM (MVLM), and MV + LS (MVLS), and a control (CK) group with no materials. Results demonstrated that treatments significantly decreased soil available Cd by 19.40-32.55 %, 10.20-39.58 %, and 25.36-40.66 % at tillering, filling, and maturing stages compared to CK, respectively. Moreover, exchangeable Cd was transformed into more stable fractions. Compared with individual treatments, MVLM and MVLS treatments further decreased available Cd and exchangeable Cd. Overall, Cd in brown rice was reduced by 18.97-77.39 % compared with CK. And the Cd in iron plaque decreased by 14.12-31.14 %, 24.65-61.60 %, 2.6-38.28 % across three stages. Furthermore, soil pH, dissolved organic carbon, and cation exchange capacity increased, along with 0.22-62.09 % and 0.57-10.66 % increases in free and amorphous iron oxide contents at all stages, respectively. Compared with lime alone, the integration of MV returning facilitated increased formation of Fed, Feo and enhanced the antagonistic effect among grain Ca with Cd; Additionally, it increased AAs in brown rice, improving rice quality and potentially reducing Cd transport. Mantel tests and Partial least squares path modeling revealed a significant positive correlation between Cd in IP and rice Cd uptake and a significant negative correlation between available Cd, Fed and Feo. These findings provide valuable insights into the mechanisms involved in mitigating soil Cd bioavailability using integrated approaches with MV returning and lime materials.
Asunto(s)
Cadmio , Compuestos de Calcio , Oryza , Óxidos , Contaminantes del Suelo , Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Restauración y Remediación Ambiental/métodosRESUMEN
Hyperuricemia, characterized by elevated uric acid levels and subsequent crystal deposition, contributing to conditions such as gout, cardiovascular events, and kidney injury, poses a significant health threat, particularly in developed countries. Current drug options for treatment are limited, with safety concerns, leading to suboptimal therapeutic outcomes in symptomatic hyperuricemia patients and a lack of pharmaceutical interventions for asymptomatic cases. Distinguishing from the previous drug design strategies, we directly target uric acid, the pathological molecule of hyperuricemia, resulting in a pyrimidine derivative capable of increasing the solubility and excretion of uric acid by forming a complex with it. Its prodrug showed an anti-hyperuricemia activity comparable to benzbromarone and a favorable safety profile in vivo. Our finding provides a strategy purely based on organic chemistry to address the largely unmet therapeutic needs on novel anti-hyperuricemia drugs.
RESUMEN
Cadmium (Cd) in paddy soil poses significant risks to humans due to its strong biological migration and toxicity. Chinese milk vetch (MV) is commonly used as green manure in the paddy fields of southern China and its potential to decrease the availability of Cd has been identified. Nevertheless, the effects of MV combined with lime materials (lime, L; limestone, LS) on Cd availability, soil properties, enzyme activity and comprehensive benefits are still not fully understood in double-cropping rice system. A field study was conducted to investigate these changes. The results indicated that all treatments notably decreased soil available Cd (Avail-Cd) by 19.3-44.3% and 14.9-43.1% during early and late rice, compared with CK. Moreover, the Cd fractions transformed to more stable forms. Compared to CK, all treatments reduced brown rice Cd content by 34.6-64.2% and 12.7-52.5% during the two periods. Furthermore, the translocation factors root to shoot, as well as shoot to brown rice, decreased. The combination led to improvements in soil properties, soil enzyme activity. Meantime, Cd in iron-manganese plaque (IMP) decreased by 31.9-51.1% and 29.0-42.7% respectively during two periods in amendments treatments. Soil pH and DOC were more important factors for Cd bioavailability than other properties. Additionally, rice Cd uptake was positively correlated with Cd in IMP. Enzyme activity exhibited a negative correlation with soil active Cd. Partial Least Squares Path Model (PLS-PM) indicated that the mitigation of Cd pollution helped to improve soil enzyme activity. Grey correlation analysis (GRA) indicated that MVLS showed the best comprehensive benefits in soil-plant system. Overall, the combination of MV and lime materials could reduce Cd availability, enhance soil properties and enzyme activity. And this could be strengthened by the combination. These findings will provide valuable insights for Cd-contaminated soil remediation.
Asunto(s)
Cadmio , Compuestos de Calcio , Oryza , Óxidos , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Cadmio/metabolismo , Suelo/química , Compuestos de Calcio/química , Óxidos/química , China , Agricultura/métodos , Estiércol , Restauración y Remediación Ambiental/métodosRESUMEN
The peripheral retinal refractive state plays an important role in eye growth and development and is closely related to the development of myopia. Existing methods for measuring the peripheral retinal refractive state are cumbersome and can only detect in a limited range. To address the above shortcomings, this paper proposes a retinal refractive state detection method using optical refractive compensation imaging. First, a series of defocus images is captured using an optical system, and then the images are enhanced and filtered. Subsequently, the Sobel function is applied to calculate sharpness, and the asymmetric Gaussian (AG) model is employed for peak fitting, allowing for the determination of the fundus retina's overall refractive compensation value. We performed consistency analysis on the central and peripheral diopters with autorefractor KR-8900 (Topcon, Japan) and WAM-5500 (Grand Seiko, Japan), respectively. The intraclass correlation coefficients (ICCs) are all greater than 0.9, showing good consistency. This is a promising alternative to the current techniques for assessing the refraction of the peripheral retina.
RESUMEN
Fungal diseases form perforated disease spots in tobacco plants, resulting in a decline in tobacco yield and quality. The present study investigated the antagonistic effect of Bacillus subtilis CTXW 7-6-2 against Rhizoctonia solani, its ability to promote the growth of tobacco seedlings, and the expression of disease resistance-related genes for efficient and eco-friendly plant disease control. Our results showed that CTXW 7-6-2 had the most vigorous growth after being cultured for 96 h, and its rate of inhibition of R. solani growth in vitro was 94.02%. The volatile compounds produced by CTXW 7-6-2 inhibited the growth of R. solani significantly (by 96.62%). The fungal growthinhibition rate of the B. subtilis CTXW 7-6-2 broth obtained after high-temperature and no-high-temperature sterile fermentation was low, at 50.88% and 54.63%, respectively. The lipopeptides extracted from the B. subtilis CTXW 7-6-2 fermentation broth showed a 74.88% fungal growth inhibition rate at a concentration of 100 mg/l. Scanning and transmission electron microscopy showed some organelle structural abnormalities, collapse, shrinkage, blurring, and dissolution in the R. solani mycelia. In addition, CTXW 7-6-2 increased tobacco seedling growth and improved leaf and root weight compared to the control. After CTXW 7-6-2 inoculation, tobacco leaves showed the upregulation of the PDF1.2, PPO, and PAL genes, which are closely related to target spot disease resistance. In conclusion, B. subtilis CTXW 7-6-2 may be an efficient biological control agent in tobacco agriculture and enhance plant growth potential.
Asunto(s)
Bacillus subtilis , Nicotiana , Bacillus subtilis/genética , Resistencia a la Enfermedad , RhizoctoniaRESUMEN
BACKGROUND: Different MR elastography (MRE) systems may produce different stiffness measurements, making direct comparison difficult in multi-center investigations. PURPOSE: To assess the repeatability and reproducibility of liver stiffness measured by three typical MRE systems. STUDY TYPE: Prospective. POPULATION/PHANTOMS: Thirty volunteers without liver disease history (20 males, aged 21-28)/5 gel phantoms. FIELD STRENGTH/SEQUENCE: 3.0 T United Imaging Healthcare (UIH), 1.5 T Siemens Healthcare, 3.0 T General Electric Healthcare (GE)/Echo planar imaging-based MRE sequence. ASSESSMENT: Wave images of volunteers and phantoms were acquired by three MRE systems. Tissue stiffness was evaluated by two observers, while phantom stiffness was assessed automatically by code. The reproducibility across three MRE systems was quantified based on the mean stiffness of each volunteer and phantom. STATISTICAL TESTS: Intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman analyses were used to assess the interobserver reproducibility, the interscan repeatability, and the intersystem reproducibility. Paired t-tests were performed to assess the interobserver and interscan variation. Friedman tests with Dunn's multiple comparison correction were performed to assess the intersystem variation. P values less than 0.05 indicated significant difference. RESULTS: The reproducibility of stiffness measured by the two observers demonstrated consistency with ICC > 0.92, CV < 4.32%, Mean bias < 2.23%, and P > 0.06. The repeatability of measurements obtained using the electromagnetic system for the liver revealed ICC > 0.96, CV < 3.86%, Mean bias < 0.19%, P > 0.90. When considering the range of reproducibility across the three systems for liver evaluations, results ranged with ICCs from 0.70 to 0.87, CVs from 6.46% to 10.99%, and Mean biases between 1.89% and 6.30%. Phantom studies showed similar results. The values of measured stiffness differed across all three systems significantly. DATA CONCLUSION: Liver stiffness values measured from different MRE systems can be different, but the measurements across the three MRE systems produced consistent results with excellent reproducibility. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
RESUMEN
OBJECTIVES: The capability of MR elastography (MRE) to differentiate fibrosis and inflammation, and to provide precise diagnoses is crucial, whereas the coexistence of fibrosis and inflammation may obscure the diagnostic accuracy. METHODS: In this retrospective study, from June 2020 to December 2022, chronic viral hepatitis patients who underwent multifrequency MRE (mMRE) were included in, and further divided into, training and validation cohorts. The hepatic viscoelastic parameters [shear wave speed (c) and loss angle (φ) of the complex shear modulus] were obtained from mMRE. The logistic regression and receiver operating characteristic (ROC) curves were generated to evaluate performance of viscoelastic parameters for fibrosis and inflammation. RESULTS: A total of 233 patients were assigned to training cohort and validation cohorts (mean age, 52 years ± 13 (SD); 51 women; training cohort, n = 170 (73%), and validation cohort, n = 63 (27%)). Liver c exhibited superior performance in detecting fibrosis with ROC (95% confidence interval) of ≥ S1 (0.96 (0.92-0.99)), ≥ S2 (0.86 (0.78-0.92)), ≥ S3 (0.89 (0.84-0.95)), and S4 (0.88 (0.83-0.93)). Similarly, φ was effective in diagnosing inflammation with ROC values of ≥ G2 (0.72 (0.63-0.81)), ≥ G3 (0.88 (0.83-0.94)), and G4 (0.92 (0.87-0.98)). And great predictive discrimination for fibrosis and inflammation were shown in validation cohort (all AUCs > 0.75). CONCLUSION: The viscoelastic parameters derived from multifrequency MRE could realize simultaneous detection of hepatic fibrosis and inflammation. CRITICAL RELEVANCE STATEMENT: Fibrosis and inflammation coexist in chronic liver disease which obscures the diagnostic performance of MR elastography, whereas the viscoelastic parameters derived from multifrequency MR elastography could realize simultaneous detection of hepatic fibrosis and inflammation. KEY POINTS: ⢠Hepatic biomechanical parameters derived from multifrequency MR elastography could effectively detect fibrosis and inflammation. ⢠Liver stiffness is useful for detecting fibrosis independent of inflammatory activity. ⢠Fibrosis could affect the diagnostic efficacy of liver viscosity in inflammation, especially in early-grade of inflammation.
RESUMEN
BACKGROUND: Pretreatment identification of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is important when selecting treatment strategies. PURPOSE: To improve models for predicting MVI and recurrence-free survival (RFS) by developing nomograms containing three-dimensional (3D) MR elastography (MRE). STUDY TYPE: Prospective. POPULATION: 188 patients with HCC, divided into a training cohort (n = 150) and a validation cohort (n = 38). In the training cohort, 106/150 patients completed a 2-year follow-up. FIELD STRENGTH/SEQUENCE: 1.5T 3D multifrequency MRE with a single-shot spin-echo echo planar imaging sequence, and 3.0T multiparametric MRI (mp-MRI), consisting of diffusion-weighted echo planar imaging, T2-weighted fast spin echo, in-phase out-of-phase T1-weighted fast spoiled gradient-recalled dual-echo and dynamic contrast-enhanced gradient echo sequences. ASSESSMENT: Multivariable analysis was used to identify the independent predictors for MVI and RFS. Nomograms were constructed for visualization. Models for predicting MVI and RFS were built using mp-MRI parameters and a combination of mp-MRI and 3D MRE predictors. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, chi-squared or Fisher's exact tests, multivariable analysis, area under the receiver operating characteristic curve (AUC), DeLong test, Kaplan-Meier analysis and log rank tests. P < 0.05 was considered significant. RESULTS: Tumor c and liver c were independent predictors of MVI and RFS, respectively. Adding tumor c significantly improved the diagnostic performance of mp-MRI (AUC increased from 0.70 to 0.87) for MVI detection. Of the 106 patients in the training cohort who completed the 2-year follow up, 34 experienced recurrence. RFS was shorter for patients with MVI-positive histology than MVI-negative histology (27.1 months vs. >40 months). The MVI predicted by the 3D MRE model yielded similar results (26.9 months vs. >40 months). The MVI and RFS nomograms of the histologic-MVI and model-predicted MVI-positive showed good predictive performance. DATA CONCLUSION: Biomechanical properties of 3D MRE were biomarkers for MVI and RFS. MVI and RFS nomograms were established. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
RESUMEN
Lithium/sodium metal anodes are considered promising candidates to realize high-energy-density batteries because of their high theoretical specific capacity and low potential. However, their cycling stability are hindered by uncontrolled dendrites growth. Herein, SnSe nanoparticles are tightly anchored on the fiber of carbon cloth (CC) to construct SnSe@CC host material in order to control Li/Na nucleation behavior and restrain dendrites growth. It is demonstrated that the alloying product of Li15Sn4/Na15Sn4 with strong metal affinity can provide abundant active nucleation sites, and three-dimensional structure of CC host can significantly decrease the local electric current, thereby guiding homogeneous metal deposition without Li and Na dendrites. Meanwhile, the conversion product of Li2Se/Na2Se will uniformly cover on the surface of metal to serve as ultra-stable solid state interface film. As a result, high-capacity Li metal anode (20 mAh·cm-2) and Na metal anode (10 mAh·cm-2) can work steadily with ultra-long lifespans over 5000 and 6000 h with low overpotentials of 7 mV and 141 mV, respectively. Moreover, the assembled Li and Na metal full batteries exhibit superior electrochemical performances, confirming the practicability of metal anode confined in composite host. Such a strategy of conversion-alloying-type materials as hosts opens up a new path for dendrite-free metal anode electrode.
RESUMEN
There is an urgent need for a mass population screening tool for diabetes. Skin tissue contains a large number of endogenous fluorophores and physiological parameter markers related to diabetes. We built an excitation-emission spectrum measurement system with the excited light sources of 365, 395, 415, 430, and 455 nm to extract skin characteristics. The modeling experiment was carried out to design and verify the accuracy of the recovery of tissue intrinsic discrete three-dimensional fluorescence spectrum. Blood oxygen modeling experiment results indicated the accuracy of the physiological parameter extraction algorithm based on the diffuse reflectance spectrum. A community population cohort study was carried out. The tissue-reduced scattering coefficient and scattering power of the diabetes were significantly higher than normal control groups. The Gaussian multi-peak fitting was performed on each excitation-emission spectrum of the subject. A total of 63 fluorescence features containing information such as Gaussian spectral curve intensity, central wavelength position, and variance were obtained from each person. Logistic regression was used to construct the diabetes screening model. The results showed that the area under the receiver operating characteristic curve of the model for predicting diabetes was 0.816, indicating a high diagnostic value. As a rapid and non-invasive detection method, it is expected to have high clinical value.
Asunto(s)
Diabetes Mellitus , Tamizaje Masivo , Humanos , Estudios de Cohortes , Análisis Espectral , Piel/diagnóstico por imagen , Diabetes Mellitus/diagnóstico por imagen , Espectrometría de Fluorescencia/métodosRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Mushrooms in the genus Hericium are used as functional food and traditional medicines for a long history in East Asian countries such as China, India, Japan, and Korea. Some species of Hericium are called as monkey head mushroom (Houtougu) in China and Yamabushitake in Japan, which are traditionally considered as rare and precious health promoting food and medicinal materials for the treatment of dyspepsia, insomnia, chronic gastritis, and digestive tract tumors. THE AIM OF THE REVIEW: This review aims to summarize the ethnopharmacology and structural diversity of secondary metabolites from Hericium species, as well as the pharmacological activities of the crude extracts and pure compounds from Hericium species in recent years. MATERIALS AND METHODS: All the information was gathered by searching Scifinder, PubMed, Web of Science, ScienceDirect, Springer, Wiley, ACS, CNKI, Baidu Scholar, Google Scholar databases and other published materials (books and Ph.D. and M. Sc. Dissertations) using the keywords "Hericium", "Traditional uses", "Chemical composition", "Quality control" and "Pharmacological activity" (1971-May 2023). The species name was checked with https://www.mycobank.org/. RESULTS: The traditional uses of Hericium species were summarized, and 230 secondary metabolites from Hericium species were summarized and classified into six classes, mainly focusing on their chemical diversity, biosynthesis, biological activities. The modern pharmacological experiments in vivo or in vitro on their crude and fractionated extracts showed that the chemical components from Hericium species have a broad range of bioactivities, including neuroprotective, antimicrobial, anticancer, α-glucosidase inhibitory, antioxidant, and anti-inflammatory activities. CONCLUSIONS: The secondary metabolites discovered from Hericium species are highly structurally diverse, and they have the potential to be rich resources of bioactive fungal natural products. Moreover, the unveiled bioactivities of their crude extracts and pure compounds are closely related to critical human health concerns, and in-depth studies on the potential lead compounds, mechanism of pharmacological effects and pharmaceutical properties are clearly warranted.
Asunto(s)
Hericium , Fitoterapia , Humanos , Etnofarmacología , Medicina Tradicional , Extractos Vegetales/uso terapéutico , Fitoquímicos/uso terapéuticoRESUMEN
BACKGROUND: To evaluate the effects and safety of pediatric tuina for recurrent respiratory tract infections (RRTIs). METHODS: Web of Science, PubMed, Cochrane Library, Embase, CNKI, Wanfang Data, VIP, and CBM databases were searched from inception to September 20 2023. Two authors independently selected studies, collected data, and evaluated methodological quality using the Cochrane Risk of Bias tool. Revman 5.4 was used for the meta-analysis. RESULTS: Fifteen randomized controlled trials involving 1420 pediatric patients were included in this meta-analysis. The meta-analysis indicated that pediatric tuina significantly reduced the incidence of RRTIs [MD -1.11, 95% confidence interval (CI) (-1.77, -0.46)], decreased infection duration (MD -1.16 days, 95% CI [- 1.66,â -â 0.66]), improved IgA (MD 0.25 g/L, 95% CI [0.09, 0.41]), IgG (MD 1.64 g/L; 95% CI [0.82, 2.45]), CD3+ (MD 3.33%, 95% CI [0.74, 5.92]), CD4+ (MD 4.78%, 95% CI [2.08, 7.48]), CD4+/CD8+ ratio (MD 0.27%, 95% CI [0.08, 0.47]), and total effective rate (RR 1.19, 95% CI [1.13, 1.25]). However, IgM levels (MD 0.26 g/L, 95% CI [-0.26, 0.81]) and CD8+ (MD -1.36%, 95% CI [- 3.12, 0.41]) were not significantly different between the groups. Moreover, no Tuina-linked adverse reactions were observed. CONCLUSION: Pediatric tuina has shown positive effects in RRTIs treatment. However, these results should be interpreted with caution owing to study quality. Further large-scale and high-quality randomized controlled trials are warranted to confirm these findings.
Asunto(s)
Infecciones del Sistema Respiratorio , Niño , Humanos , Relación CD4-CD8 , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
To determine how to strengthen the Cd-enriched plant Solanum nigrum L. to remediate cadmium(Cd)-contaminated soil, a pot experiment was conducted with five treatments:control treatment(CK), Glomus mosseae(GM), G. mosseae+citric acid(GM+CA), G. mosseae+Bacillus megaterium(GM+BM), and G. mosseae+B. megaterium+citric acid(GM+BM+CA). We measured soil total Cd, available Cd, plant Cd uptake, and microbial community changes and analyzed the effects of exogenous microbial agents and citric acid addition on the remediation effect of Cd contamination by S. nigrum L. The results showed that relative to that of the CK treatment, the root, stem, and leaf biomass of the GM treatment significantly increased by 35.67%, 41.35%, and 65.38%, and the root and stem biomass of the GM+BM+CA treatment significantly increased by 73.38% and 75.38%. The GM+BM+CA treatment significantly increased Cd accumulation in leaves by 226.84%. The GM+BM+CA treatment significantly increased the Cd transport factor from stem to leaves by 52.47%. The GM+BM+CA treatment significantly increased the leaf bioconcentration factor by 120.53%. In addition, the combined restoration also had an impact on the rhizosphere microbial community structure, especially in inducing the relative abundance of some key microbial groups such as Proteobacteria, Actinobacteria, Glomeromycota, and Olpidiomycota to increase by 2.00%-5.77%, 0.76%-9.96%, 2.11%-3.63%, and 0.54%-2.98%, respectively. According to the RDA analysis, Proteobacteria and Actinobacteria were negatively correlated with soil total Cd, whereas Glomeromycota and Olpidiomycota were negatively correlated with soil total Cd. The changes in key microorganisms enhanced the ability of S. nigrum L. to absorb rhizosphere nutrients and resist Cd stress, increased the Cd accumulation ability of S. nigrum L., and effectively reduced the total Cd content in soil. In conclusion, G. mosseae, citric acid, and B. megaterium activated insoluble Cd in the soil by co-inoculation, which contributed to more Cd accumulation by S. nigrum L. and also produced co-remediation with G. mosseae. The enrichment plant-microorganism combined remediation Cd-contaminated soil has good application potential.
Asunto(s)
Glomeromycota , Contaminantes del Suelo , Solanum nigrum , Biodegradación Ambiental , Cadmio/análisis , Suelo/química , Ácido Cítrico/farmacología , Contaminantes del Suelo/análisis , Bacterias , ProteobacteriaRESUMEN
The invention of near-infrared pedant-based double-cable conjugated polymers has demonstrated remarkable efficacy in single-component organic solar cells (SCOSCs). This work focuses on the innovative double-cable conjugated polymers aimed at attaining good absorption and suitable energy levels. Specifically, in the aromatic side units, the electron-donating (D) part is designed using a thieno[3,4-c]pyrrole-4,6-dione (TPD) as a core unit, flanked by two cyclopentadithiophene groups on either side. The electron-deficient (A) terminal groups consist of 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene) malononitrile (NC), which can be further modified through fluorination to modulate the physical properties and packing modes of the acceptor material. The resulting double-cable conjugated polymers exhibit broad absorption spectra spanning 500-850 nm and possess lowered Frontier energy levels when incorporating fluorine elements, providing decreased voltage losses in SCOSCs. Therefore, SCOSCs fabricated using these polymers have demonstrated power conversion efficiencies ranging from 7.6 to 10.2%, in which fluorine-containing double-cable conjugated polymers showed higher PCEs due to more favorable crystalline packing, enhanced exciton dissociation probability, and charge-transporting ability.
RESUMEN
Introduction: Corni Fructus (CF) is a Chinese herbal medicine used for medicinal and dietary purposes. It is available commercially in two main forms: raw CF (unprocessed CF) and wine-processed CF. Clinical observations have indicated that wine-processed CF exhibits superior hypoglycemic activity compared to its raw counterpart. However, the mechanisms responsible for this improvement are not well understood. Methods: To address this gap in knowledge, we conducted metabolomics analysis using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-QTOF-MS) to compare the chemical composition of raw CF and wine-processed CF. Subsequently, network analysis, along with immunofluorescence assays, was employed to elucidate the potential targets and mechanisms underlying the hypoglycemic effects of metabolites in CF. Results: Our results revealed significant compositional differences between raw CF and wine-processed CF, identifying 34 potential markers for distinguishing between the two forms of CF. Notably, wine processing led to a marked decrease in iridoid glycosides and flavonoid glycosides, which are abundant in raw CF. Network analysis predictions provided clues that eight compounds might serve as hypoglycemic metabolites of CF, and glucokinase (GCK) and adenylate cyclase (ADCYs) were speculated as possible key targets responsible for the hypoglycemic effects of CF. Immunofluorescence assays confirmed that oleanolic acid and ursolic acid, two bioactive compounds present in CF, significantly upregulated the expression of GCK and ADCYs in the HepG2 cell model. Discussion: These findings support the notion that CF exerted hypoglycemic activity via multiple components and targets, shedding light on the impact of processing methods on the chemical composition and hypoglycemic activity of Chinese herbal medicine.
RESUMEN
Potassium-ion batteries (PIBs) have broad application prospects in the field of electric energy storage systems because of its abundant K reserves, and similar "rocking chair" operating principle as lithium-ion batteries (LIBs). Aiming to the large volume expansion and sluggish dynamic behavior of anode materials for storing large sized K-ion, bismuth telluride (Bi2 Te3 ) nanoplates hierarchically encapsulated by reduced graphene oxide (rGO), and nitrogen-doped carbon (NC) are constructed as anodes for PIBs. The resultant Bi2 Te3 @rGO@NC architecture features robust chemical bond of BiâOâC, tightly physicochemical confinement effect, typical conductor property, and enhanced K-ion adsorption ability, thereby producing superior electrochemical kinetics and outstanding morphological and structural stability. It is visually elucidated via high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) that conversion-alloying dual-mechanism plays a significant role in K-ion storage, allowing 12 K-ion transport per formular unit employing Bi as redox site. Thus, the high first reversible specific capacity of 322.70 mAh g-1 at 50 mA g-1 , great rate capability and cyclic stability can be achieved for Bi2 Te3 @rGO@NC. This work lays the foundation for an in-depth understanding of conversion-alloying mechanism in potassium-ion storage.
RESUMEN
Colloidal CsPbX3 (X = Br, Cl, or I) perovskite nanocrystals (PNCs) have emerged as low-cost, high-performance light-emitting materials, whereas the toxicity of lead limits their applications. Europium halide perovskites offer promising alternatives to lead-based perovskites due to their narrow spectral width and high monochromaticity. Nonetheless, the photoluminescence quantum yields (PLQYs) of CsEuCl3 PNCs have been very low (â¼2%). Herein, Ni2+-doped CsEuCl3 PNCs have been first reported, exhibiting bright blue emission centered at 430.6 ± 0.6 nm with a full width at half-maximum of 23.5 ± 0.3 nm and a PLQY of 19.7 ± 0.4%. To the best of our knowledge, this is the highest PLQY value reported for CsEuCl3 PNCs so far, an order of magnitude higher than in previous work. DFT calculations demonstrate that Ni2+ enhances PLQY by concurrently increasing the oscillator strength and removing Eu3+ which hinders the photorecombination process. B-site doping offers a promising approach to enhance the performance of lanthanide-based lead-free PNCs.
RESUMEN
Protein modifications have significant effects on tumorigenesis. N-Myristoylation is one of the most important lipidation modifications, and N-myristoyltransferase 1 (NMT1) is the main enzyme required for this process. However, the mechanism underlying how NMT1 modulates tumorigenesis remains largely unclear. Here, we found that NMT1 sustains cell adhesion and suppresses tumor cell migration. Intracellular adhesion molecule 1 (ICAM-1) was a potential functional downstream effector of NMT1, and its N-terminus could be N-myristoylated. NMT1 prevented ubiquitination and proteasome degradation of ICAM-1 by inhibiting Ub E3 ligase F-box protein 4, which prolonged the half-life of ICAM-1 protein. Correlations between NMT1 and ICAM-1 were observed in liver and lung cancers, which were associated with metastasis and overall survival. Therefore, carefully designed strategies focusing on NMT1 and its downstream effectors might be helpful to treat tumors.