Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Urol Case Rep ; 56: 102810, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39157017

RESUMEN

To describe a rare case of left adrenal Castleman disease (CD), splenomegaly, and cirrhosis. An examination revealed a left adrenal mass for more than three months, the patient, 44, was well-prepared for surgery after her left adrenal tumor was removed laparoscopically using a retroperitoneal approach, her postoperative pathology suggested that she had Castleman disease of the adrenal glands, and there had been no metastasis or recurrence during the six-month follow-up period. We have evaluated linked literature reports in this article, reporting relevant clinical knowledge regarding the disease and synthesizing previous research, in an effort to increase our understanding of it.

2.
Langmuir ; 40(23): 12239-12249, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38819103

RESUMEN

The high gravimetric (58.74 kJ/g) and volumetric (137.45 kJ/cm3) heat values loaded in boron (B) offer significant potential for application in solid propellants and explosives. However, the high melting (2076 °C) and boiling (3927 °C) points of boron powder and the low melting point (450 °C) of oxidation products affect the energy performance and application of boron. Fluorine-containing polymers have high oxidation potential and excellent mechanical properties and can produce expectant gaseous products through the combustion reaction with boron oxide, but research examining the interaction between purified boron powder and fluoropolymers and the optimal selection of the fluoropolymer remains scarce. Herein, the binding energy between typical fluoropolymers [Viton, polyvinylidene fluoride, poly(vinylidene fluoride-co-chlorotrifluoroethylene), and vinylidene fluoride] and boron was calculated via molecular dynamics simulations, which shows that Viton is an appropriate candidate for coating boron powder. In the experiment, The Bw@Viton core-shell composites were prepared using Viton as the coating layer, and boron powder was pre-purified with acetonitrile. Its structure, thermal properties, ignition, and combustion characteristics were then characterized. The results revealed successful removal of the oxide layer, and the hydrophobicity was significantly improved after Viton coating. Purification and coating synergistically enhance the energy release of boron powder, and the composites demonstrated excellent thermal, ignition, and combustion performances. In particular, the heat of oxidation and heat of combustion were increased by 26.6 and 32.7%, respectively. The ignition delay time was reduced by 53.2% compared to raw boron. A prospective reaction mechanism between boron and Viton is thus proposed.

3.
Atherosclerosis ; 391: 117487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492245

RESUMEN

BACKGROUND AND AIMS: Therapeutic arteriogenesis is a promising direction for the treatment of ischemic disease caused by atherosclerosis. However, pharmacological or biological approaches to stimulate functional collateral vessels are not yet available. Identifying new drug targets to promote and explore the underlying mechanisms for therapeutic arteriogenesis is necessary. METHODS: Peptide OM-LV20 (20 ng/kg) was administered for 7 consecutive days on rat hindlimb ischemia model, collateral vessel growth was assessed by H&E staining, liquid latex perfusion, and specific immunofluorescence. In vitro, we detected the effect of OM-LV20 on human umbilical vein endothelial cells (HUVEC) proliferation and migration. After transfection, we performed quantitative real-time polymerase chain reaction, in situ-hybridization and dual luciferase reporters to assessed effective miRNAs and target genes. The proteins related to downstream signaling pathways were detected by Western blot. RESULTS: OM-LV20 significantly increased visible collateral vessels and endothelial nitric oxide synthase (eNOS), together with enhanced inflammation cytokine and monocytes/macrophage infiltration in collateral vessels. In vitro, we defined a novel microRNA (miR-29b-3p), and its inhibition enhanced proliferation and migration of HUVEC, as well as the expression of vascular endothelial growth factor A (VEGFA). OM-LV20 also promoted migration and proliferation of HUVEC, and VEGFA expression was mediated via inhibition of miR-29b-3p. Furthermore, OM-LV20 influenced the protein levels of VEGFR2 and phosphatidylinositol3-kinase (PI3K)/AKT and eNOS in vitro and invivo. CONCLUSIONS: Our data indicated that OM-LV20 enhanced arteriogenesis via the miR-29b-3p/VEGFA/VEGFR2-PI3K/AKT/eNOS axis, and highlighte the application potential of exogenous peptide molecular probes through miRNA, which could promote effective therapeutic arteriogenesis in ischemic conditions.


Asunto(s)
MicroARNs , Péptidos , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratas , Animales , Arteria Femoral/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Isquemia/genética , Proliferación Celular
4.
J Cancer Res Clin Oncol ; 150(2): 103, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400862

RESUMEN

PURPOSE: At present, dysfunctional CD8+ T-cells in the nasopharyngeal carcinoma (NPC) tumor immune microenvironment (TIME) have caused unsatisfactory immunotherapeutic effects, such as a low response rate of anti-PD-L1 therapy. Therefore, there is an urgent need to identify reliable markers capable of accurately predicting immunotherapy efficacy. METHODS: Utilizing various algorithms for immune-infiltration evaluation, we explored the role of EIF3C in the TIME. We next found the influence of EIF3C expression on NPC based on functional analyses and RNA sequencing. By performing correlation and univariate Cox analyses of CD8+ Tcell markers from scRNA-seq data, we identified four signatures, which were then used in conjunction with the lasso algorithm to determine corresponding coefficients in the resulting EIF3C-related CD8+ T-cell signature (ETS). We subsequently evaluated the prognostic value of ETS using univariate and multivariate Cox regression analyses, Kaplan-Meier curves, and the area under the receiver operating characteristic curve (AUROC). RESULTS: Our results demonstrate a significant relationship between low expression of EIF3C and high levels of CD8+ T-cell infiltration in the TIME, as well as a correlation between EIF3C expression and progression of NPC. Based on the expression levels of four EIF3C-related CD8+ T-cell marker genes, we constructed the ETS predictive model for NPC prognosis, which demonstrated success in validation. Notably, our model can also serve as an accurate indicator for detecting immunotherapy response. CONCLUSION: Our findings suggest that EIF3C plays a significant role in NPC progression and immune modulation, particularly in CD8+ T-cell infiltration. Furthermore, the ETS model holds promise as both a prognostic predictor for NPC patients and a tool for adjusting individualized immunotherapy strategies.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/terapia , Pronóstico , Inmunoterapia , Neoplasias Nasofaríngeas/terapia , Microambiente Tumoral
5.
Int Wound J ; 21(2): e14774, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361180

RESUMEN

This meta-analysis aims to comprehensively assess the impact of laparoscopic radical prostatectomy (LRP) on wound infection in patients with prostate cancer (PCa). A systematic search was conducted, from database inception to November 2023, in EMBASE, Google Scholar, Cochrane Library, PubMed, Wanfang and China National Knowledge Infrastructure databases for randomized controlled trials (RCTs) comparing LRP with open radical prostatectomy (ORP) in the treatment of PCa. Two researchers independently screened the literature, extracted data and conducted quality assessments based on pre-defined inclusion and exclusion criteria. Stata 17.0 software was employed for data analysis. Overall, 15 RCTs involving 1458 PCa patients were included. The analysis revealed the incidence of wound infection (odds ratio [OR] = 0.28, 95% confidence interval [CI] = 0.16-0.51, p < 0.001) and complications (OR = 0.27, 95% CI = 0.20-0.37, p < 0.001) was significantly lower in the LRP group compared to the ORP group. This study demonstrates that LRP in PCa patients can effectively reduce the incidence of wound infections and complications, indicating significant therapeutic efficacy and justifying its broader clinical application.


Asunto(s)
Laparoscopía , Prostatectomía , Neoplasias de la Próstata , Infección de la Herida Quirúrgica , Humanos , Masculino , Prostatectomía/métodos , Prostatectomía/efectos adversos , Neoplasias de la Próstata/cirugía , Laparoscopía/métodos , Laparoscopía/efectos adversos , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/etiología , Persona de Mediana Edad , Anciano , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Medicine (Baltimore) ; 103(2): e36877, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215130

RESUMEN

This study aimed to establish and validate a nomogram for ductal adenocarcinoma of the prostate (DAC) to accurately predict the prognosis of DAC patients. The data of 834 patients with confirmed DAC were obtained from the Surveillance, Epidemiology, and End Results database. The cases were randomly assigned to the training and internal validation cohorts. Data from patients attending our institution as an external validation cohort (n = 35). Nomogram and web-based dynamic nomogram were constructed based on Cox regression analysis, and their prediction accuracy was evaluated by concordance index (C-index), calibration curve, receiver operating characteristic (ROC) curve, and decision curve analysis. Multivariate analyses identified age, T-stage, N-stage, M-stage, surgery, lymph node dissection, Gleason score, and PSA as independent prognostic factors for overall survival. The C-index and calibration curves demonstrate the good discriminative performance of the prediction model. The area under the curve further confirmed the accuracy of the nomogram in predicting survival. In addition, the area under the curve and decision curve analysis were better than the 7th tumor-node-metastasis staging system. The Kaplan-Meier curves of the nomogram-based risk groups showed significant differences (P < .001). We constructed and validated the first nomogram to predict patients with DAC.


Asunto(s)
Adenocarcinoma , Neoplasias Primarias Secundarias , Masculino , Humanos , Pronóstico , Nomogramas , Próstata , Escisión del Ganglio Linfático
7.
Biomed Pharmacother ; 170: 116064, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38154268

RESUMEN

Eupolyphaga sinensis Walker (ESW) is a traditional Chinese medicine formulation used to treat hyperlipidemia. However, the hypolipidemic effect of the active peptides from E. sinensis Walker (APE) is incompletely understood. We studied the hypolipidemic effect of APE and explored the impact of APE on the gut microbiota (GM) in rats suffering from hyperlipidemia. APE was prepared by enzymatic digestion, and its structure was characterized using various methods. The anti-hyperlipidemic activity of APE was assessed using a high-fat diet (HFD)-induced model in zebrafish and rats. In rats, HFD administration caused abnormalities of lipid metabolism and disturbances of the GM and amino acid (AA) profile in plasma. The abundance of bacteria of the phyla Firmicutes and Bacteroides was increased significantly (p < 0.05), and the relative abundance of Lactobacillus species and Clostridium species was decreased significantly (p < 0.05). HFD therapy affected the levels of 12 AAs in vivo: 10 AAs showed increased levels and two AAs had decreased levels (p < 0.05). Similar results were demonstrated in an experiment on fecal microbiota transplantation. APE treatment dose-dependently decreased lipid factors and liver damage (p < 0.05). Sequencing of the 16 S rRNA gene indicated that APE improved the intestinal-flora structure of rats with HL markedly, and increased the relative abundance of Lactobacillus species and Clostridium species. Metabolomics analysis indicated that APE could alter the levels of 10 AAs affected by HFD consumption. Spearman correlation analysis revealed that gamma-aminobutyric acid (GABA) could be a crucial metabolite, and Lactobacillus species and Clostridium species might be important bacteria for the action of APE against hyperlipidemia. We speculate that APE exhibited an anti-hyperlipidemic effect by regulating GABA synthesis in the presence of Lactobacillus species and Clostridium species.


Asunto(s)
Microbioma Gastrointestinal , Hominidae , Hiperlipidemias , Ratas , Animales , Hiperlipidemias/metabolismo , Pez Cebra , Dieta Alta en Grasa/efectos adversos , Biomarcadores , Lactobacillus , Bacterias , Ácido gamma-Aminobutírico/farmacología
8.
Arch Esp Urol ; 76(8): 605-621, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37960960

RESUMEN

BACKGROUND: The aim of this study was to investigate the common gene signatures and potential molecular mechanisms of bladder urothelial carcinoma (BLCA) and metabolic syndrome (MS). METHODS: Transcriptome data for BLCA and MS were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was utilized to identify co-expression networks associated with BLCA and MS, and five hub genes were further screened and validated using logistic least absolute shrinkage and selection operator (LASSO) regression models and receiver operating characteristic (ROC) curve, and external dataset for validation. The relationship between the hub genes and the clinicopathological characteristics and prognosis of BLCA patients was explored in the GEO and The Cancer Genome Atlas (TCGA)-BLCA cohorts, respectively. Differences in the immune microenvironment of BLCA and MS were analyzed using the database CIBERSORT and the R package "ssGSEA", and the correlation between hub genes and tumor microenvironment, immune score and targeted drugs was analyzed with the help of the TCGA-BLCA cohort. Finally, BLCA single-cell RNA (scRNA) data were used to analyze the expression levels of the hub genes in various cell types of BLCA and molecular mechanisms. RESULTS: Five hub genes were screened by WGCNA and LASSO regression analysis, namely AP2-associated protein kinase 1 (AAK1), ATP-binding cassette subfamily F member 2 (ABCF2), Mitochondrial ribosomal protein L42 (MRPL42), La-related protein 3 (SSB) and TATA-box binding protein-associated factor 10 (TAF10). Analyzed in the GEO and TCGA-BLCA cohorts, we found that the hub genes (TAF10 and ABCF2) were closely associated with the clinicopathological characteristics and prognosis of BLCA patients. In CIBERSORT, we discovered that the hub genes are closely linked to the immune microenvironment, immune score, and especially with dendritic cells (DCs). In the single-cell RNA sequencing (scRNA-seq) analysis of BLCA, we identified that SSB was significantly differentially expressed in BLCA and normal bladder tissues and that it plays an important role in the development of BLCA. CONCLUSIONS: The interaction of BLCA with MS may be associated with several cancer pathways being activated and identified TAF10 and ABCF2 as potential biomarkers and therapeutic targets for patients with BLCA and MS.


Asunto(s)
Carcinoma de Células Transicionales , Síndrome Metabólico , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Vejiga Urinaria , Sistemas de Liberación de Medicamentos , Microambiente Tumoral/genética
9.
Biochem Biophys Res Commun ; 689: 149222, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37979330

RESUMEN

Hyperuricemia is a clinical disease characterized by a continuous increase in uric acid (UA) due to purine metabolism disorder. As current drug treatments are limited, it is imperative to explore new drugs that offer better safety and efficacy. In this study, Nephila clavata toxin gland homogenates were isolated and purified by exclusion chromatography and high-performance liquid chromatography, resulting in the identification and isolation of a short peptide (NCTX15) with the sequence 'QSGHTFK'. Analysis showed that NCTX15 exhibited no cytotoxicity in mouse macrophages or toxic and hemolytic activity in mice. Notably, NCTX15 inhibited UA production by down-regulating urate transporter 1 and glucose transporter 9 and up-regulating organic anion transporter 1, thus promoting UA excretion. In addition, NCTX15 alleviated the inflammatory response and renal injury by inhibiting the expression of inflammatory factors interleukin-6, interleukin-1ß, tumor necrosis factor alpha, NLR family, pyrin domain-containing 3, and pyroptosis-related factor gasdermin D. These results indicate that NCTX15 displayed urate-lowering, anti-inflammatory, and analgesic effects. As the first urate-reducing short peptide isolated from a spider toxin gland homogenate, NCTX15 exhibits considerable potential as a novel drug molecule for anti-gout and hyperuricemia treatment.


Asunto(s)
Gota , Hiperuricemia , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Ácido Úrico/metabolismo , Gota/metabolismo , Riñón/metabolismo , Interleucina-6/metabolismo , Xantina Oxidasa/metabolismo
10.
Burns Trauma ; 11: tkad035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026443

RESUMEN

Background: Wound management of diabetic foot ulcers (DFUs) is a complex and challenging task, and existing strategies fail to meet clinical needs. Therefore, it is important to develop novel drug candidates and discover new therapeutic targets. However, reports on peptides as molecular probes for resolving issues related to DFUs remain rare. This study utilized peptide RL-QN15 as an exogenous molecular probe to investigate the underlying mechanism of endogenous non-coding RNA in DFU wound healing. The aim was to generate novel insights for the clinical management of DFUs and identify potential drug targets. Methods: We investigated the wound-healing efficiency of peptide RL-QN15 under diabetic conditions using in vitro and in vivo experimental models. RNA sequencing, in vitro transfection, quantitative real-time polymerase chain reaction, western blotting, dual luciferase reporter gene detection, in vitro cell scratches, and cell proliferation and migration assays were performed to explore the potential mechanism underlying the promoting effects of RL-QN15 on DFU repair. Results: Peptide RL-QN15 enhanced the migration and proliferation of human immortalized keratinocytes (HaCaT cells) in a high-glucose environment and accelerated wound healing in a DFU rat model. Based on results from RNA sequencing, we defined a new microRNA (miR-4482-3p) related to the promotion of wound healing. The bioactivity of miR-4482-3p was verified by inhibiting and overexpressing miR-4482-3p. Inhibition of miR-4482-3p enhanced the migration and proliferation ability of HaCaT cells as well as the expression of vascular endothelial growth factor B (VEGFB). RL-QN15 also promoted the migration and proliferation ability of HaCaT cells, and VEGFB expression was mediated via inhibition of miR-4482-3p expression by the p38 mitogen-activated protein kinase (p38MAPK) and smad3 signaling pathways. Conclusions: RL-QN15 is an effective molecule for the treatment of DFUs, with the underlying mechanism related to the inhibition of miR-4482-3p expression via the p38MAPK and smad3 signaling pathways, ultimately promoting re-epithelialization, angiogenesis and wound healing. This study provides a theoretical basis for the clinical application of RL-QN15 as a molecular probe in promoting DFU wound healing.

11.
ACS Nano ; 17(20): 20621-20633, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791899

RESUMEN

Nickel-rich LiNi0.8Co0.15Al0.015O2 (NCA) with excellent energy density is considered one of the most promising cathodes for lithium-ion batteries. Nevertheless, the stress concentration caused by Li+/Ni2+ mixing and oxygen vacancies leads to the structural collapse and obvious capacity degradation of NCA. Herein, a facile codoping of anion (F-)-cation (Mg2+) strategy is proposed to address these problems. Benefiting from the synergistic effect of F- and Mg2+, the codoped material exhibits alleviated Li+/Ni2+ mixing and demonstrates enhanced electrochemical performance at high voltage (≥4.5 V), outperformed the pristine and F-/Mg2+ single-doped counterparts. Combined experimental and theoretical studies reveal that Mg2+ and F- codoping decreases the Li+ diffusion energy barrier and enhances the Li+ transport kinetics. In particular, the codoping synergistically suppresses the Li+/Ni2+ mixing and lattice oxygen escape, and alleviates the stress-strain accumulation, thereby inhibiting crack propagation and improving the electrochemical performance of the NCA. As a consequence, the designed Li0.99Mg0.01Ni0.8Co0.15Al0.05O0.98F0.02 (Mg1+F2) demonstrates a much higher capacity retention of 82.65% than NCA (55.69%) even after 200 cycles at 2.8-4.5 V under 1 C. Furthermore, the capacity retention rate of the Mg1+F2||graphite pouch cell after 500 cycles is 89.6% compared to that of the NCA (only 79.4%).

12.
Amino Acids ; 55(11): 1687-1699, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37794194

RESUMEN

Excessive melanogenesis leads to hyperpigmentation, which is one of the common skin conditions in humans. Existing whitening cosmetics cannot meet market needs due to their inherent limitations. Thus, the development of novel skin-whitening agents continues to be a challenge. The peptide OA-VI12 from the skin of amphibians at high altitude has attracted attention due to its remarkable anti light damage activity. However, whether OA-VI12 has the skin-whitening effect of inhibiting melanogenesis is still. Mouse melanoma cells (B16) were used to study the effect of OA-VI12 on cell viability and melanin content. The pigmentation model of C57B/6 mouse ear skin was induced by UVB and treated with OA-VI12. Melanin staining was used to observe the degree of pigmentation. MicroRNA sequencing, quantitative real-time PCR (qRT-PCR), immunofluorescence analysis and Western blot were used to detect the change of factor expression. Double luciferase gene report experiment was used to prove the regulatory relationship between miRNA and target genes. OA-VI12 has no effect on the viability of B16 cells in the concentration range of 1-100 µM and significantly inhibits the melanin content of B16 cells. Topical application of OA-VI12, which exerted transdermal potency, prevented UVB-induced pigmentation of ear skin. MicroRNA sequencing and double luciferase reporter analysis results showed that miR-122-5p, which directly regulated microphthalmia-associated transcription factor (Mitf), had significantly different expression before and after treatment with OA-VI12. Mitf is a simple helix loop and leucine zipper transcription factor that regulates tyrosinase (Tyr) expression by binding to the M-box promoter element of Tyr. qRT-PCR, immunofluorescence analysis and Western blot showed that OA-VI12 up-regulated the expression of miR-122-5p and inhibited the expression of Mitf and Tyr. The effects of OA-VI12 on melanogenesis inhibition in vitro and in vivo may involve the miR-122-5p/Mitf/tyr axis. OA-VI12 represents the first report on a natural amphibian-derived peptide with skin-whitening capacity and the first report of miR-122-5p as a target for regulating melanogenesis, thereby demonstrating its potential as a novel skin-whitening agent and highlighting amphibian-derived peptides as an underdeveloped resource.


Asunto(s)
Melaninas , MicroARNs , Humanos , Animales , Ratones , Melaninas/metabolismo , Monofenol Monooxigenasa/genética , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Luciferasas/metabolismo , Péptidos/farmacología , Línea Celular Tumoral
13.
Sci Rep ; 13(1): 14876, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684278

RESUMEN

Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease' condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.


Asunto(s)
Algoritmos , Epilepsia , Humanos , Redes Neurales de la Computación , Memoria a Largo Plazo , Electroencefalografía , Epilepsia/diagnóstico por imagen
14.
Open Life Sci ; 18(1): 20220682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588995

RESUMEN

Bladder urothelial carcinoma (BLCA) is the most common malignant tumor of the urinary tract with a high lethality rate, and its immunotherapy resistance and tumor recurrence have become a major challenge in its clinical treatment. G Protein-Coupled Receptors (GPRs) are the largest family of receptors on the cell membrane surface, involved in multiple signaling pathways, and are excellent targets for oncology drug action. The transcriptome profile, single cell transcriptome profile, and clinical data of BLCA were extracted and integrated from TCGA and GEO databases, respectively. The GPR-related genes were obtained from GSEA-MSigDB database. The GPR-related gene signatures of 15 genes were constructed by using the methods of least absolute shrinkage and selection operator regression, multifactor Cox model. At the same time, tumor microenvironment (TME)-score signatures were constructed based on the immune microenvironment of BLCA, and GPR-TME-score signature was further constructed. The stability of this model was verified by using the external dataset GSE160693. We constructed risk groups by combining BLCA patient prognostic information, and with the help of BLCA scRNA transcriptome profiling, we explored differences in prognosis, immune scores, cell-cell interactions, tumor mutational burden, immune checkpoints, and response to immunotherapy in each risk group. We found that the GPR-TME-score signature was an independent prognostic factor for BLCA patients. the TME-score was a protective factor for the prognosis of BLCA patients. Among BLCA patients, GPR-high + TME-low risk group had the worst prognosis, while GPR-high + TME-high risk group had the best prognosis, and the latter had better immune score and immunotherapy response. The above differences in immune response among the subgroups may be related to the higher immune cell infiltration in the GPR-high + TME-high group. GPR-related gene signatures and TME are closely related to BLCA prognosis and immunotherapy, and GPR-related gene signature can be a useful tool to assess BLCA prognosis and immunotherapy response.

15.
Environ Toxicol ; 38(12): 2826-2835, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37565786

RESUMEN

BACKGROUND: Active peptides play a vital role in the development of new drugs and the identification and discovery of drug targets. As the first reported native peptide homodimer with pro-regenerative potency, OA-GP11d could potentially be used as a novel molecular probe to help elucidate the molecular mechanism of skin wound repair and provide new drug targets. METHODS: Bioinformatics analysis and luciferase assay were adopted to determine microRNAs (miRNAs) and its target. The prohealing potency of the miRNA was determined by MTS and a Transwell experiment against mouse macrophages. Enzyme-linked immunosorbent assay, realtime polymerase chain reaction, and western blotting were performed to explore the molecular mechanisms. RESULTS: In this study, OA-GP11d was shown to induce Mus musculus microRNA-186-5p (mmu-miR-186-5p) down-regulation. Results showed that miR-186-5p had a negative effect on macrophage migration and proliferation as well as a targeted and negative effect on TGF-ß type II receptor (TGFßR2) expression and an inhibitory effect on activation of the downstream SMAD family member 2 (Smad2) and protein-p38 kinase signaling pathways. Importantly, delivery of a miR-186-5p mimic delayed skin wound healing in mice. CONCLUSION: miR-186-5p regulated macrophage migration and proliferation to delay wound healing through the TGFßR2/Smad2/p38 molecular axes, thus providing a promising new pro-repair drug target.


Asunto(s)
MicroARNs , Animales , Ratones , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Regulación hacia Abajo , Movimiento Celular/genética , Cicatrización de Heridas
16.
Cell Mol Biol Lett ; 28(1): 61, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37501100

RESUMEN

BACKGROUND: Amphibian derived pro-healing peptides as molecular probes might provide a promising strategy for development of drug candidates and elucidation of cellular and molecular mechanisms of skin wound healing. A novel skin amphibian peptide, OA-RD17, was tested for modulation of cellular and molecular mechanisms associated with skin wound healing. METHODS: Cell scratch, cell proliferation, trans-well, and colony formation assays were used to explore the pro-healing ability of peptide OA-RD17 and microRNA-632 (miR-632). Then, the therapeutic effects of OA-RD17 and miR-632 were assessed in mice, diabetic patient ex vivo skin wounds and SD rats. Moreover, hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence staining were performed to detect skin wound tissue regeneration, inflammatory factors expression, and macrophage polarization. Finally, RNA sequencing, molecular docking, co-localization, dual luciferase reporter, real-time quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to explore the mechanism of OA-RD17 and miR-632 on facilitating skin wound healing. RESULTS: The non-toxic peptide (OA-RD17) promoted macrophage proliferation and migration by activating MAPK and suppressed inflammation by inhibiting NF-κB. In keratinocytes, OA-RD17 inhibited excessive inflammation, and activated MAPK via the Toll-like receptor 4 (TLR4) to promote proliferation and migration, as well as up-regulate the expression of miR-632, which targeted GSK3ß to activate Wnt/ß-catenin to boost proliferation and migration in a positive feedback manner. Notably, OA-RD17 promoted transition from the inflammatory to proliferative stage, accelerated epidermal and granulation regeneration, and exhibited therapeutic effects on mouse and diabetic patient ex vivo skin wounds. MiR-632 activated Wnt/ß-catenin to promote full-thickness skin wound healing in rats. CONCLUSIONS: OA-RD17 exhibited promising therapeutic effects on mice (full-thickness, deep second-degree burns), and ex vivo skin wounds in diabetic patients by regulating macrophages proliferation, migration, and polarization (MAPK, NF-κB), and keratinocytes proliferation and migration (TLR4/MAPK/miR-632/Wnt/ß-catenin molecular axis). Moreover, miR-632 also activated Wnt/ß-catenin to promote full-thickness skin wound healing in rats. Notably, our results indicate that OA-RD17 and miR-632 are promising pro-healing drug candidates.


Asunto(s)
MicroARNs , beta Catenina , Ratones , Ratas , Animales , beta Catenina/metabolismo , Receptor Toll-Like 4 , FN-kappa B/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Cicatrización de Heridas , Péptidos/farmacología , MicroARNs/genética , Inflamación , Proliferación Celular/genética
17.
Curr Neuropharmacol ; 21(12): 2550-2562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37132110

RESUMEN

BACKGROUND: OL-FS13, a neuroprotective peptide derived from Odorrana livida, can alleviate cerebral ischemia-reperfusion (CI/R) injury, although the specific underlying mechanism remains to be further explored. OBJECTIVE: The effect of miR-21-3p on the neural-protective effects of OL-FS13 was examined. METHODS: In this study, the multiple genome sequencing analysis, double luciferase experiment, RT-qPCR, and Western blotting were used to explore the mechanism of OL-FS13. RESULTS: Showed that over-expression of miR-21-3p against the protective effects of OL-FS13 on oxygen- glucose deprivation/re-oxygenation (OGD/R)-damaged pheochromocytoma (PC12) cells and in CI/R-injured rats. miR-21-3p was then found to target calcium/calmodulin-dependent protein kinase 2 (CAMKK2), and its overexpression inhibited the expression of CAMKK2 and phosphorylation of its downstream adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), thereby inhibiting the therapeutic effects of OL-FS13 on OGD/R and CI/R. Inhibition of CAMKK2 also antagonized up-regulated of nuclear factor erythroid 2-related factor 2 (Nrf-2) by OL-FS13, thereby abolishing the antioxidant activity of the peptide. CONCLUSION: Our results showed that OL-FS13 alleviated OGD/R and CI/R by inhibiting miR-21-3p to activate the CAMKK2/AMPK/Nrf-2 axis.


Asunto(s)
Isquemia Encefálica , MicroARNs , Daño por Reperfusión , Ratas , Animales , MicroARNs/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Proteínas Quinasas Activadas por AMP/uso terapéutico , Neuroprotección , Oxígeno/metabolismo , Apoptosis , Isquemia Encefálica/metabolismo
18.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049973

RESUMEN

Boron powder is a kind of metal fuel with high gravimetric and volumetric calorific values, which has been widely used in military fields such as solid propellants, high-energy explosives, and pyrotechnics. However, the easily formed liquid oxide layer can adhere to the surface of boron powder and react with the hydroxyl (-OH) group of hydroxyl-terminated polybutadiene (HTPB) binder to form a gel layer that is detrimental to propellant processing and restricts the complete oxidation of boron powder. Therefore, to improve the combustion efficiency of boron powder, the ignition and combustion mechanisms of boron powder have been studied, and surface coating modification strategies have been developed by researchers worldwide, aiming to optimize the surface properties, improve the reaction activity, and promote the energy release of boron powder. In this review, recent studies on the ignition and combustion mechanisms of boron powder are discussed. Moreover, the reported boron powder coating materials are classified according to the chemical structure and reaction mechanism. Additionally, the mechanisms and characteristics of different coating materials are summarized, and the mechanism diagrams of fluoride and metal oxide are provided. Furthermore, promising directions for modification methods and the potential application prospects of boron powder are also proposed.

19.
Clin Transl Oncol ; 25(8): 2607-2623, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37004669

RESUMEN

BACKGROUND: Renal cancer is one of the common malignant tumors of the urinary tract, prone to distant metastasis and drug resistance, with a poor clinical prognosis. SLC14A1 belongs to the solute transporter family, which plays a role in urinary concentration and urea nitrogen recycling in the renal, and is closely associated with the development of a variety of tumors. METHODS: Transcription data for renal clear cell carcinoma (KIRC) were obtained from the public databases Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA), and we investigated the differences in SLC14A1 expression in cancerous and normal tissues of renal cancer, its correlation with the clinicopathological features of renal cancer patients. Then, we verified the expression levels of SLC14A1 in renal cancer tissues and their Paracancerous tissues using RT-PCR, Western-blotting and immunohistochemistry. Finally, we used renal endothelial cell line HEK-293 and renal cancer cell lines 786-O and ACHN to explore the effects of SLC14A1 on the biological behaviors of renal cancer cell proliferation, invasion and metastasis using EDU, MTT proliferation assay, Transwell invasion assay and scratch healing assay. RESULTS: SLC14A1 was lowly expressed in renal cancer tissues and this was further validated by RT-PCR, Western blotting, and immunohistochemistry in our clinical samples. Analysis of KIRC single-cell data suggested that SLC14A1 was mainly expressed in endothelial cells. Survival analysis showed that low levels of SLC14A1 expression were associated with a better clinical prognosis. In biological behavioral studies, we found that upregulation of SLC14A1 expression levels inhibited the proliferation, invasion, and metastatic ability of renal cancer cells. CONCLUSION: SLC14A1 plays an important role in the progression of renal cancer and has the potential to become a new biomarker for renal cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Biomarcadores , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células HEK293 , Neoplasias Renales/patología , Pronóstico , Transportadores de Urea
20.
J Neuroinflammation ; 20(1): 53, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855153

RESUMEN

BACKGROUND: Despite considerable efforts, ischemic stroke (IS) remains a challenging clinical problem. Therefore, the discovery of effective therapeutic and targeted drugs based on the underlying molecular mechanism is crucial for effective IS treatment. METHODS: A cDNA-encoding peptide was cloned from RNA extracted from Rana limnocharis skin, and the mature amino acid sequence was predicted and synthesized. Hemolysis and acute toxicity of the peptide were tested. Furthermore, its neuroprotective properties were evaluated using a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in neuron-like PC12 cells. The underlying molecular mechanisms were explored using microRNA (miRNA) sequencing, quantitative real-time polymerase chain reaction, dual-luciferase reporter gene assay, and western blotting. RESULTS: A new peptide (NP1) with an amino acid sequence of 'FLPAAICLVIKTC' was identified. NP1 showed no obvious toxicities in vivo and in vitro and was able to cross the blood-brain barrier. Intraperitoneal administration of NP1 (10 nmol/kg) effectively reduced the volume of cerebral infarction and relieved neurological dysfunction in MCAO/R model rats. Moreover, NP1 significantly alleviated the decrease in viability and increase in apoptosis of neuron-like PC12 cells induced by OGD/R. NP1 effectively suppressed inflammation by reducing interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) levels in vitro and in vivo. Furthermore, NP1 up-regulated the expression of miR-6328, which, in turn, down-regulated kappa B kinase ß (IKKß). IKKß reduced the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65) and inhibitor of NF-κB (I-κB), thereby inhibiting activation of the NF-κB pathway. CONCLUSIONS: The newly discovered non-toxic peptide NP1 ('FLPAAICLVIKTC') exerted neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKß/NF-κB axis. Our findings not only provide an exogenous peptide drug candidate and endogenous small nucleic acid drug candidate but also a new drug target for the treatment of IS. This study highlights the importance of peptides in the development of new drugs, elucidation of pathological mechanisms, and discovery of new drug targets.


Asunto(s)
MicroARNs , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Ratas , FN-kappa B , Quinasa I-kappa B , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas Serina-Treonina Quinasas , Péptidos/farmacología , Péptidos/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...