Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995014

RESUMEN

PD-1 (Programmed cell death protein 1) regulates the metabolic reprogramming of myeloid-derived suppressor cells and myeloid cell differentiation, as well as the type I interferon (IFN-I) signaling pathway in myeloid cells in the tumor microenvironment. PD-1, therefore, is a key inhibitory receptor in myeloid cells. However, the regulation of PD-1 expression in myeloid cells is unknown. We report that the expression level of PDCD1, the gene that encodes the PD-1 protein, is positively correlated with the levels of IFNB1 and IFNAR1 in myeloid cells in human colorectal cancer. Treatment of mouse myeloid cell lines with recombinant IFNß protein elevated PD-1 expression in myeloid cells in vitro. Knocking out IFNAR1, the gene that encodes the IFN-I-specific receptor, diminished the inductive effect of IFNß on PD-1 expression in myeloid cells in vitro. Treatment of tumor-bearing mice with a lipid nanoparticle-encapsulated IFNß-encoding plasmid (IFNBCOL01) increased IFNß expression, resulting in elevated PD-1 expression in tumor-infiltrating myeloid cells. At the molecular level, we determined that IFNß activates STAT1 (signal transducer and activator of transcription 1) and IRFs (interferon regulatory factors) in myeloid cells. Analysis of the cd279 promoter identified IRF2-binding consensus sequence elements. ChIP (chromatin immunoprecipitation) analysis determined that the pSTAT1 directly binds to the irf2 promoter and that IRF2 directly binds to the cd279 promoter in myeloid cells in vitro and in vivo. In colon cancer patients, the expression levels of STAT1, IRF2 and PDCD1 are positively correlated in tumor-infiltrating myeloid cells. Our findings determine that IFNß activates PD-1 expression at least in part by an autocrine mechanism via the stimulation of the pSTAT1-IRF2 axis in myeloid cells.


Asunto(s)
Factor 2 Regulador del Interferón , Células Mieloides , Receptor de Muerte Celular Programada 1 , Factor de Transcripción STAT1 , Transducción de Señal , Células Mieloides/metabolismo , Células Mieloides/efectos de los fármacos , Animales , Humanos , Factor de Transcripción STAT1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Ratones , Factor 2 Regulador del Interferón/metabolismo , Factor 2 Regulador del Interferón/genética , Transducción de Señal/efectos de los fármacos , Interferón Tipo I/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Receptor de Interferón alfa y beta/genética , Interferón beta/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Acta Biomater ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038749

RESUMEN

Pathogenic bacteria are closely associated with the occurrence, development and metastasis of oral squamous cell carcinoma (OSCC). Antibacterial therapy has been considered an enhancement strategy to suppress bacteria-associated tumors and promote anti-tumor immune responses. Herein, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for the in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis (Pg), one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, composed of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820, was prepared using a simple dissolve-dry-swell solvent exchange method. Upon 808 nm laser irradiation, PNIPAM/DL@TIR exerted photothermal effects to ablate Pg-colonized OSCC and generate dual tumor and bacterial antigens. Owing to its large number of catechol groups, PNIPAM/DL@TIR efficiently captured these antigens to form an in situ antigen repository, thereby eliciting robust and durable antitumor immune responses. Proteomic analysis revealed that the captured antigens comprised both tumor neoantigens and bacterial antigens. The catechol groups endowed PNIPAM/DL@TIR with antioxidant activity, which was also conducive to stimulating antitumor immunity. Altogether, this study develops an injectable adhesive hydrogel and provides a combination strategy for treating bacteria-associated OSCC. STATEMENT OF SIGNIFICANCE: In this study, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis, one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, which consists of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820 exhibited outstanding photothermal performance. Owing to the presence of catechol groups, PNIPAM/DL@TIR has good bioadhesive properties and can capture protein antigens to form in situ antigen repository, thus initiating robust and long-term antitumor immune responses. In addition, PNIPAM/DL@TIR exhibited strong antioxidant activity that is favorable for promoting antitumor immunity. In the mouse model of OSCC with bacterial infection, PNIPAM/DL@TIR not only ablated the primary tumors upon NIR laser irradiation, but also induced tumor and bacterial vaccination in situ to suppress distant tumors and lung metastasis.

3.
J Mater Chem B ; 12(22): 5465-5478, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38742364

RESUMEN

Melittin (Mel) is considered a promising candidate drug for the treatment of triple negative breast cancer (TNBC) due to its various antitumor effects. However, its clinical application is hampered by notable limitations, including hemolytic activity, rapid clearance, and a lack of tumor selectivity. Here, we designed novel biomimetic nanoparticles based on homologous tumor cell membranes and poly(lactic-co-glycolic acid) (PLGA)/poly(beta-aminoester) (PBAE), denoted MDM@TPP, which efficiently coloaded the cytolytic peptide Mel and the photosensitizer mTHPC. Both in vitro and in vivo, the MDM@TPP nanoparticles effectively mitigated the acute toxicity of melittin and exhibited strong TNBC targeting ability due to the homologous targeting effect of the tumor cell membrane. Under laser irradiation, the MDM@TPP nanoparticles showed excellent photodynamic performance and thus accelerated the release of Mel by disrupting cell membrane integrity. Moreover, Mel combined with photodynamic therapy (PDT) can synergistically kill tumor cells and induce significant immunogenic cell death, thereby stimulating the maturation of dendritic cells (DCs). In 4T1 tumor-bearing mice, MDM@TPP nanoparticles effectively inhibited the growth and metastasis of primary tumors and finally prevented tumor recurrence by improving the immune response.


Asunto(s)
Meliteno , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Neoplasias de la Mama Triple Negativas , Meliteno/química , Meliteno/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Nanopartículas/química , Animales , Ratones , Femenino , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
4.
J Med Chem ; 67(10): 7973-7994, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38728549

RESUMEN

Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of ß-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.


Asunto(s)
Antineoplásicos , Carbolinas , Neutrófilos , Arginina Deiminasa Proteína-Tipo 4 , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/inmunología , Carbolinas/farmacología , Carbolinas/química , Carbolinas/uso terapéutico , Carbolinas/síntesis química , Animales , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Femenino , Humanos , Microambiente Tumoral/efectos de los fármacos , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Fenotipo , Relación Estructura-Actividad
5.
Mol Pharm ; 21(5): 2148-2162, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38536949

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer for which effective therapies are lacking. Targeted remodeling of the immunosuppressive tumor microenvironment (TME) and activation of the body's immune system to fight tumors with well-designed nanoparticles have emerged as pivotal breakthroughs in tumor treatment. To simultaneously remodel the immunosuppressive TME and trigger immune responses, we designed two potential therapeutic nanodelivery systems to inhibit TNBC. First, the bromodomain-containing protein 4 (BRD4) inhibitor JQ1 and the cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) were coloaded into chondroitin sulfate (CS) to obtain CS@JQ1/CXB nanoparticles (NPs). Then, the biomimetic nanosystem MM@P3 was prepared by coating branched polymer poly(ß-amino ester) self-assembled NPs with melittin embedded macrophage membranes (MM). Both in vitro and in vivo, the CS@JQ1/CXB and MM@P3 NPs showed excellent immune activation efficiencies. Combination treatment exhibited synergistic cytotoxicity, antimigration ability, and apoptosis-inducing and immune activation effects on TNBC cells and effectively suppressed tumor growth and metastasis in TNBC tumor-bearing mice by activating the tumor immune response and inhibiting angiogenesis. In summary, this study offers a novel combinatorial immunotherapeutic strategy for the clinical TNBC treatment.


Asunto(s)
Azepinas , Celecoxib , Triazoles , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/efectos de los fármacos , Animales , Femenino , Ratones , Humanos , Celecoxib/administración & dosificación , Línea Celular Tumoral , Sulfatos de Condroitina/química , Sulfatos de Condroitina/administración & dosificación , Nanopartículas/química , Nanopartículas/administración & dosificación , Meliteno/administración & dosificación , Meliteno/química , Apoptosis/efectos de los fármacos , Sistema de Administración de Fármacos con Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Polímeros/química , Ratones Desnudos , Sistemas de Liberación de Medicamentos/métodos
6.
ACS Nano ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319978

RESUMEN

Type I interferon (IFN-I) plays a critical role in host cancer immunosurveillance, but its expression is often impaired in the tumor microenvironment. We aimed at testing the hypothesis that cationic lipid nanoparticle delivery of interferon ß (IFNß)-encoding plasmid to tumors is effective in restoring IFNß expression to suppress tumor immune evasion. We determined that IFN-I function in tumor suppression depends on the host immune cells. IFN-I activates the expression of Cxcl9 and Cxcl10 to enhance T cell tumor infiltration. RNA-Seq detected a low level of IFNα13 and IFNß in colon tumor tissue. scRNA-Seq revealed that IFNß is expressed in immune cell subsets in non-neoplastic human tissues and to a lesser degree in human colon tumor tissues. Forced expression of IFNα13 and IFNß in colon tumor cells up-regulates major histocompatibility complex I (MHC I) expression and suppresses colon tumor growth in vivo. In human cancer patients, IFNß expression is positively correlated with human leukocyte antigen (HLA) expression, and IFN-I signaling activation correlates with the patient response to PD-1 blockade immunotherapy. To translate this finding to colon cancer immunotherapy, we formulated a 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-cholesterol-encapsulated IFNß-encoding plasmid (IFNBCOL01). IFNBCOL01 transfects colon tumor cells to express IFNß to increase the level of MHC I expression. IFNBCOL01 therapy transfects tumor cells and tumor-infiltrating immune cells to produce IFNß to activate MHC I and granzyme B expression and inhibits colon tumor growth in mice. Our data determine that lipid nanoparticle delivery of IFNß-encoding plasmid DNA enhances tumor immunogenicity and T cell effector function to suppress colon tumor growth in vivo.

9.
J Mater Chem B ; 11(47): 11265-11279, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37974456

RESUMEN

As one of the most common malignancies, oral squamous cell carcinoma (OSCC) with high rates of invasiveness and metastasis threatens people's health worldwide, while traditional therapeutic approaches have not met the requirement of its cure. Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have shown great potential for OSCC treatment due to their noninvasiveness or minimal invasiveness, high selectivity and little tolerance. However, PTT or PDT alone makes it difficult to eradicate OSCC and prevent its metastasis and recurrence. Here, double-layered membrane vesicles (DMVs) were extracted from attenuated Porphyromonas gingivalis, one of the most common pathogens inside the oral region, and served as an immune adjuvant to develop a biomimetic phototherapeutic nanoagent named PBAE/IR780@DMV for OSCC treatment via combining dual PTT/PDT and robust antitumor immunity. To obtain PBAE/IR780@DMV, poly(ß-amino) ester (PBAE) was used as a carrier material to prepare the nanoparticles for loading IR780, a widely known photosensitizer possessing both PTT and PDT capabilities, followed by surface wrapping with DMVs. Upon 808 nm laser irradiation, PBAE/IR780@DMV exerted strong antitumor effects against OSCC both in vitro and in vivo, via combining PTT/PDT and specific immune responses triggered by tumor-associated antigens and DMVs. Altogether, this study provides a promising biomimetic phototherapeutic nanoagent for comprehensive treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Fotoquimioterapia , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello , Biomimética , Neoplasias de la Boca/tratamiento farmacológico
10.
Small ; 19(52): e2304014, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37653616

RESUMEN

Bacterial therapy is an emerging hotspot in tumor immunotherapy, which can initiate antitumor immune activation through multiple mechanisms. Porphyromonas gingivalis (Pg), a pathogenic bacterium inhabiting the oral cavity, contains a great deal of pathogen associated molecular patterns that can activate various innate immune cells to promote antitumor immunity. Owing to the presence of protoporphyrin IX (PpIX), Pg is also an excellent photosensitizer for photodynamic therapy (PDT) via the in situ generation of reactive oxygen species. This study reports a bacterial nanomedicine (nmPg) fabricated from Pg through lysozyme degradation, ammonium chloride lysis, and nanoextrusion, which has potent PDT and immune activation performances for oral squamous cell carcinoma (OSCC) treatment. To further promote the tumoricidal efficacy, a commonly used chemotherapeutic drug doxorubicin (DOX) is efficiently encapsulated into nmPg through a simple incubation method. nmPg/DOX thus prepared exhibits significant synergistic effects on inhibiting the growth and metastasis of OSCC both in vitro and in vivo via photodynamic-immunotherapy and chemotherapy. In summary, this work develops a promising bacterial nanomedicine for enhanced treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Fotoquimioterapia , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Fotoquimioterapia/métodos , Nanomedicina , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Inmunoterapia , Línea Celular Tumoral
11.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13831-13843, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37478030

RESUMEN

Real-time density estimation is ubiquitous in many applications, including computer vision and signal processing. Kernel density estimation is arguably one of the most commonly used density estimation techniques, and the use of "sliding window" mechanism adapts kernel density estimators to dynamic processes. In this article, we derive the asymptotic mean integrated squared error (AMISE) upper bound for the "sliding window" kernel density estimator. This upper bound provides a principled guide to devise a novel estimator, which we name the temporal adaptive kernel density estimator (TAKDE). Compared to heuristic approaches for "sliding window" kernel density estimator, TAKDE is theoretically optimal in terms of the worst-case AMISE. We provide numerical experiments using synthetic and real-world datasets, showing that TAKDE outperforms other state-of-the-art dynamic density estimators (including those outside of kernel family). In particular, TAKDE achieves a superior test log-likelihood with a smaller run-time.

12.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902471

RESUMEN

The pathophysiology of Alzheimer's disease is thought to be directly linked to the abnormal aggregation of ß-amyloid (Aß) in the nervous system as a common neurodegenerative disease. Consequently, researchers in many areas are actively looking for factors that affect Aß aggregation. Numerous investigations have demonstrated that, in addition to chemical induction of Aß aggregation, electromagnetic radiation may also affect Aß aggregation. Terahertz waves are an emerging form of non-ionizing radiation that has the potential to affect the secondary bonding networks of biological systems, which in turn could affect the course of biochemical reactions by altering the conformation of biological macromolecules. As the primary radiation target in this investigation, the in vitro modeled Aß42 aggregation system was examined using fluorescence spectrophotometry, supplemented by cellular simulations and transmission electron microscopy, to see how it responded to 3.1 THz radiation in various aggregation phases. The results demonstrated that in the nucleation aggregation stage, 3.1 THz electromagnetic waves promote Aß42 monomer aggregation and that this promoting effect gradually diminishes with the exacerbation of the degree of aggregation. However, by the stage of oligomer aggregation into the original fiber, 3.1 THz electromagnetic waves exhibited an inhibitory effect. This leads us to the conclusion that terahertz radiation has an impact on the stability of the Aß42 secondary structure, which in turn affects how Aß42 molecules are recognized during the aggregation process and causes a seemingly aberrant biochemical response. Molecular dynamics simulation was employed to support the theory based on the aforementioned experimental observations and inferences.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Radiación Terahertz , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína
13.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615627

RESUMEN

Radiotherapy (RT) is one of the main clinical therapeutic strategies against cancer. Currently, multiple radiosensitizers aimed at enhancing X-ray absorption in cancer tissues have been developed, while limitations still exist for their further applications, such as poor cellular uptake, hypoxia-induced radioresistance, and unavoidable damage to adjacent normal body tissues. In order to address these problems, a cell-penetrating TAT peptide (YGRKKRRQRRRC)-modified nanohybrid was constructed by doping high-Z element Au in hollow semiconductor Cu2-xSe nanoparticles for combined RT and photothermal therapy (PTT) against breast cancer. The obtained Cu2-xSe nanoparticles possessed excellent radiosensitizing properties based on their particular band structures, and high photothermal conversion efficiency beneficial for tumor ablation and promoting RT efficacy. Further doping high-Z element Au deposited more high-energy radiation for better radiosensitizing performance. Conjugation of TAT peptides outside the constructed Cu2-xSe/Au nanoparticles facilitated their cellular uptake, thus reducing overdosage-induced side effects. This prepared multifunctional nanohybrid showed powerful suppression effects towards breast cancer, both in vitro and in vivo via integrating enhanced cell penetration and uptake, and combined RT/PTT strategies.


Asunto(s)
Neoplasias de la Mama , Péptidos de Penetración Celular , Nanopartículas del Metal , Neoplasias , Humanos , Femenino , Terapia Fototérmica , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Oro/farmacología , Oro/química , Neoplasias de la Mama/terapia , Línea Celular Tumoral
14.
IEEE Trans Neural Netw Learn Syst ; 34(8): 5024-5036, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34780338

RESUMEN

Random features approach has been widely used for kernel approximation in large-scale machine learning. A number of recent studies have explored data-dependent sampling of features, modifying the stochastic oracle from which random features are sampled. While proposed techniques in this realm improve the approximation, their suitability is often verified on a single learning task. In this article, we propose a task-specific scoring rule for selecting random features, which can be employed for different applications with some adjustments. We restrict our attention to canonical correlation analysis (CCA) and provide a novel, principled guide for finding the score function maximizing the canonical correlations. We prove that this method, called optimal randomized CCA (ORCCA), can outperform (in expectation) the corresponding kernel CCA with a default kernel. Numerical experiments verify that ORCCA is significantly superior to other approximation techniques in the CCA task.

15.
ACS Biomater Sci Eng ; 9(1): 485-497, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36507692

RESUMEN

Photothermal therapy (PTT) and photodynamic therapy (PDT) are emerging alternative antibacterial approaches. However, due to the lack of selectivity of photosensitizers for pathogenic bacteria, these methods often show more or less different degrees of in vivo toxicity. Moreover, it is difficult for PDT to exert effective antibacterial effects against anaerobic infections due to the oxygen deficiency. As one of the major anaerobic pathogens in oral infections, Porphyromonas gingivalis (P. gingivalis) acquires iron and porphyrin mainly from hemoglobin in the host. Hence, we developed a nanophotosensitizer named as oxyHb@IR820 through stable complexation between oxyhemoglobin and IR820, which is a photosensitizer possessing both PTT and PDT performance, for fighting P. gingivalis oral infection specifically and efficiently. Owing to hydrophobic interaction, oxyHb@IR820 had much stronger photoabsorption at 808 nm than free IR820, and thus exhibited significantly enhanced photothermal conversion efficiency. As an oxygen donor, oxyHb played an important role in enhancing the photodynamic efficiency of oxyHb@IR820. More importantly, oxyHb@IR820 showed efficient and specific uptake in P. gingivalis and exerted synergistic PTT/PDT performance against P. gingivalis and oral infection in golden hamsters. In summary, this study provides an efficient strategy for delivering photosensitizers specifically to P. gingivalis and augmenting antibacterial PDT against anaerobic infections.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Porphyromonas gingivalis , Oxihemoglobinas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
16.
Cancer Lett ; 554: 216033, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493901

RESUMEN

Temozolomide (TMZ) has been determined to be the chemotherapeutic drug with efficacy for glioblastoma (GBM). Thus, potentiating the therapeutic effect of TMZ can undoubtedly yield twice the result with half the effort. In this study, we found for the first time that TMZ can produce reactive oxygen species (ROS) under the influence of ultrasound (US). This property allows TMZ-US therapy to have better efficacy in the treatment of GBM. Given that the increasing use of US in central nervous system (CNS) diseases and the importance of TMZ for GBM therapy, our results will facilitate the development of TMZ-associated glioblastoma therapies. Moreover, we found that chemotherapeutic drugs might have the ability to generate ROS under the excitation of US. On a larger scale, our findings may be applicable to a wide range of known drugs.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Especies Reactivas de Oxígeno , Necroptosis , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico
17.
Adv Healthc Mater ; 12(3): e2201690, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36263794

RESUMEN

Phototherapies have many advantages for triple-negative breast cancer (TNBC) treatment. However, their effects are often limited by short blood circulation time, poor tumor selectivity and weak penetration of phototherapeutic agents, and tumor hypoxia. For overcoming these limitations, a versatile biomimetic system is developed based on red blood cells (RBCs). Photothermal agent new indocyanine green (IR820) is conjugated with the cell/tissue-penetrating TAT peptide and further efficiently encapsulated into the intact RBCs by crossing cell membranes to realize the long blood circulation. Meanwhile, cyclic RGD peptide (cRGD) is linked to the surfaces of RBCs through phospholipid insertion to obtain tumor vessel-targeting ability. Photosensitizer temoporfin (mTHPC) is next loaded into the membranes of RBCs by spontaneous transferring. The acquired biomimetic system (cRGD-RBC@mTHPC/TAT-IR820) exhibits potent photodynamic performance upon 652 nm laser irradiation with the facilitation of oxyhemoglobin, which could not only trigger TAT-IR820 release but also destroy tumor vessels. TAT-IR820 penetrates deeply into tumor tissue via the mediation of TAT peptide, exerting greatly promoted photothermal ablation against TNBC upon 808 nm laser irradiation. In situ generated tumor antigens further induce robust immune responses to suppress TNBC recurrence and metastasis. In summary, this study provides a versatile biomimetic system for comprehensive TNBC treatment via stepwise photodynamic and photothermal activations.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fototerapia , Fármacos Fotosensibilizantes/uso terapéutico , Eritrocitos , Verde de Indocianina , Nanopartículas/uso terapéutico , Línea Celular Tumoral
18.
Plant Commun ; 4(1): 100424, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-35964157

RESUMEN

Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.


Asunto(s)
Cloroplastos , Proteostasis , Cloroplastos/genética , Cloroplastos/metabolismo , Fotosíntesis , Núcleo Celular/genética , Citosol/metabolismo
19.
Int J Nanomedicine ; 17: 4293-4306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36134201

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumor in the head and neck, with a poor prognosis mainly due to recurrence and metastasis. Classical treatment modalities for OSCC like surgery and radiotherapy have difficulties in dealing with metastatic tumors, and together with chemotherapy, they have major problems related to non-specific cell death. Molecular targeted therapies offer solutions to these problems through not only potentially maximizing the anticancer efficacy but also minimizing the treatment-related toxicity. Among them, the receptor-mediated targeted delivery of anticancer therapeutics remains the most promising one. As OSCC exhibits a heterogeneous nature, selecting the appropriate receptors for targeting is the prerequisite. Hence, we reviewed the OSCC-associated receptors previously used in targeted therapy, focused on their biochemical characteristics and expression patterns, and discussed the application potential in personalized targeted therapy of OSCC. We hope that a better comprehension of this subject will help to provide the fundamental information for OSCC personalized therapeutic planning.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Terapia Molecular Dirigida , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
20.
Int J Nanomedicine ; 17: 617-633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173433

RESUMEN

BACKGROUND: Breast cancer is a common malignancy in women. Conventional clinical therapies for breast cancer all display moderate clinical efficacies and limitations. It is urgent to explore the novel and combined therapeutic strategies for breast cancer to meet clinical demand. METHODS: An iRGD tumor-penetrating peptide-modified nano-delivery system (denoted as iRGD-PSS@PBAE@JQ1/ORI nanoparticles) based on a marine sulfated polysaccharide was developed by codelivery of JQ1 (BET inhibitor) and oridonin (ORI, bioactive diterpenoid derived from traditional Chinese medicine herb). The iRGD-PSS@PBAE@JQ1/ORI NPs, surface modified with iRGD peptide conjugated propylene glycol alginate sodium sulfate (iRGD-PSS). The antitumor efficacy was evaluated both in vitro and in vivo. RESULTS: The prepared iRGD-PSS@PBAE@JQ1/ORI NPs effectively enhanced the tumor targeting and cellular internalization of JQ1 and ORI. Thus, JQ1 exerted the reversal effect on immune tolerance by decreasing the expression of PD-L1, while ORI displayed multiple antitumor effects, such as antiproliferation, inhibition of intracellular ROS production and inhibition of lactic acid secretion. CONCLUSION: Our data revealed that iRGD peptide could significantly improve the cellular internalization and tumor penetration of the nano-delivery system. The combination of JQ1 and ORI could exert synergistic antitumor activities. Taken together, this study provides a multifunctional nanotherapeutic system to enhance the anti-tumor efficiency against breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Sistema de Administración de Fármacos con Nanopartículas , Oligopéptidos/uso terapéutico , Polisacáridos , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...