Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Transl Lung Cancer Res ; 13(4): 885-900, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38736487

RESUMEN

Background: In the context of surgical interventions for lung adenocarcinoma (LADC), precise determination of the extent of LADC infiltration plays a pivotal role in shaping the surgeon's strategic approach to the procedure. The prevailing diagnostic standard involves the expeditious intraoperative pathological diagnosis of areas infiltrated by LADC. Nevertheless, current methodologies rely on the visual interpretation of tissue images by proficient pathologists, introducing an error margin of up to 15.6%. Methods: In this study, we investigated the utilization of Micro-Raman technique on isolated specimens of human LADC with the objective of formulating and validating a workflow for the pathological diagnosis of LADC featuring diverse degrees of infiltration. Our strategy encompasses a thorough pathological characterization of LADC, spanning different tissue types and levels of infiltration. Through the integration of Raman spectroscopy with advanced deep learning models for simultaneous diagnosis, this approach offers a swift, precise, and clinically relevant means of analysis. Results: The diagnostic performance of the convolutional neural network (CNN) model, coupled with the microscopic Raman technique, was found to be exceptional and consistent, surpassing the traditional support vector machine (SVM) model. The CNN model exhibited an area under the curve (AUC) value of 96.1% for effectively distinguishing normal tissue from LADC and an impressive 99.0% for discerning varying degrees of infiltration in LADCs. To comprehensively assess its clinical utility, Raman datasets from patients with intraoperative rapid pathologic diagnostic errors were utilized as test subjects and input into the established CNN model. The results underscored the substantial corrective capacity of the Micro-Raman technique, revealing a misdiagnosis correction rate exceeding 96% in all cases. Conclusions: Ultimately, our discoveries highlight the Micro-Raman technique's potential to augment the intraoperative diagnostic precision of LADC with varying levels of infiltration. And compared to the traditional SVM model, the CNN model has better generalization ability in diagnosing different infiltration levels. This method furnishes surgeons with an objective groundwork for making well-informed decisions concerning subsequent surgical plans.

2.
Front Immunol ; 15: 1351739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690281

RESUMEN

Background: A useful clinical biomarker requires not only association but also a consistent temporal relationship. For instance, chemotherapy-induced neutropenia and epidermal growth-factor inhibitor-related acneiform rash both occur within weeks of treatment initiation, thereby providing information prior to efficacy assessment. Although immune checkpoint inhibitor (ICI)-associated immune-related adverse events (irAE) have been associated with therapeutic benefit, irAE may have delayed and highly variable onset. To determine whether ICI efficacy and irAE could serve as clinically useful biomarkers for predicting each other, we determined the temporal relationship between initial efficacy assessment and irAE onset in a diverse population treated with ICI. Methods: Using two-sided Fisher exact and Cochran-Armitage tests, we determined the relative timing of initial efficacy assessment and irAE occurrence in a cohort of 155 ICI-treated patients (median age 68 years, 40% women). Results: Initial efficacy assessment was performed a median of 50 days [interquartile range (IQR) 39-59 days] after ICI initiation; median time to any irAE was 77 days (IQR 28-145 days) after ICI initiation. Median time to first irAE was 42 days (IQR 20-88 days). Overall, 58% of any irAE and 47% of first irAE occurred after initial efficacy assessment. For clinically significant (grade ≥2) irAE, 60% of any and 53% of first occurred after initial efficacy assessment. The likelihood of any future irAE did not differ according to response (45% for complete or partial response vs. 47% for other cases; P=1). In landmark analyses controlling for clinical and toxicity follow-up, patients demonstrating greater tumor shrinkage at initial efficacy assessment were more likely to develop future grade ≥2 (P=0.05) and multi-organ (P=0.02) irAE. Conclusions: In contrast to that seen with chemotherapy and molecularly targeted therapies, the temporal relationship between ICI efficacy and toxicity is complex and bidirectional. In practice, neither parameter can be routinely relied on as a clinical biomarker to predict the other.


Asunto(s)
Biomarcadores , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Femenino , Masculino , Anciano , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Resultado del Tratamiento , Factores de Tiempo
3.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38588467

RESUMEN

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Asunto(s)
Diseño de Fármacos , Elastina , Fibrosis Pulmonar , Receptores de Superficie Celular , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Animales , Ratones , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinasa 12 de la Matriz/metabolismo , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Ratones Endogámicos C57BL , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino
4.
ACS Appl Bio Mater ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619913

RESUMEN

Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.

5.
Microorganisms ; 12(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674755

RESUMEN

Globally, Enterocytozoon bieneusi has been detected in humans and various animal hosts. Wild rats and shrews have the potential to act as carriers of E. bieneusi, facilitating the parasite's transmission to humans and domestic animals. We aimed to investigate the prevalence of E. bieneusi in 652 wild rats and shrews from Zhejiang Province, China, by amplifying the internal transcribed spacer (ITS) region of rDNA through polymerase chain reaction (PCR). To determine animal species, we amplified the Cytochrome b (Cyt-b) gene in their fecal DNA using PCR. Furthermore, we determined the genotype of E. bieneusi by amplifying the ITS region of rDNA through PCR. Genetic traits and zoonotic potential were evaluated using similarity and phylogenetic analyses. Suncus murinus (n = 282) and five rat species, Rattus losea (n = 18), Apodemus agrarius (n = 36), Rattus tanezumi (n = 86), Rattus norvegicus (n = 155), and Niviventer niviventer (n = 75), were identified. The average infection rate of E. bieneusi was 14.1% (92/652) with 18.1% (51/282) in S. murinus and 11.1% (41/370) in rats (27.8% in R. losea, 22.2% in A. agrarius, 10.5% in R. tanezumi, 8.4% in R. norvegicus, and 8.0% in N. niviventer). Thirty-three genotypes were identified, including 16 known genotypes. The most commonly known genotypes were HNR-VI (n = 47) and Peru11 (n = 6). Type IV, KIN-1, SHW7, and HNPL-II were each found in two samples, while Macaque4, CH5, K, Henan-III, Henan-V, HNP-II, HNPL-I, HNPL-III, HNHZ-II, and HNHZ-III were each found in one sample. Additionally, 17 novel genotypes were discovered: WZR-VIII (n = 5), WZR-I to WZR-VII, WZR-IX to WZR-XII, and WZSH-I to WZSH-V (n = 1 each). Those 33 genotypes were divided into three groups: Group 1 (n = 25), Group 2 (n = 3), and Group 13 (n = 5). The initial report underscores the extensive occurrence and notable genetic diversity of E. bieneusi in wild rats and shrews from Zhejiang province, China. These results suggest that these animals play a pivotal role in the transmission of E. bieneusi. Furthermore, animals carrying the zoonotic genotypes of E. bieneusi pose a serious threat to residents.

6.
Stem Cells Dev ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38573013

RESUMEN

The aim of this article was to investigate whether exosomes derived from bone marrow mesenchymal stem cells repair damaged endometrial stromal cells (EnSCs) through the miR-99b-5p/PCSK9 axis. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) were isolated by ultracentrifugation and characterized using transmission electron microscopy and nanoflow cytometry. A mifepristone-induced EnSC injury model was established in vitro, and the uptake of BMSC-exos was assessed. EnSCs were divided into three groups: the normal group (ctrl), EnSC injury group (model), and BMSC-exo treatment group. The effects of BMSC-exos on EnSC proliferation, apoptosis, and vascular endothelial growth factor (VEGF) expression were assessed by coculturing MSC-exos with endometrial cells. Furthermore, high-throughput sequencing was used to identify differentially expressed genes (DEGs). Through bioinformatics analysis, reverse transcription-quantitative polymerase chain reaction, western blotting, the CCK8 assay, immunohistochemistry, and dual-luciferase experiments, the potential mechanism by which BMSC-exos-derived miRNAs repair EnSC injury was studied. BMSC-exos expressed the marker proteins CD9 and CD63. Laser confocal microscopy showed that BMSC-exos could enter damaged EnSCs. In the BMSC-exos-EnSC coculture group compared with the model group, BMSC-exos significantly increased the proliferation of damaged EnSCs and inhibited cell apoptosis in a dose-dependent manner. The expression levels of Caspase-3, Caspase-9, Bax, and VEGF mRNA were significantly downregulated in the BMSC-exos-EnSC coculture group, whereas Bcl-2 expression was upregulated. We identified 28 overlapping DEGs between the model and ctrl groups and between the BMSC-exo and model groups. Transfection with miR-99b-5p mimics significantly decreased PCSK9 gene expression and inhibited the expression of the autophagy-related proteins Beclin-1 and LC3-II/I and apoptosis, thereby promoting EnSC proliferation. Transfection with a miR-99b-5p inhibitor showed the opposite effects. Beclin-1, LC3-II/I, and PCSK9 expression in the thin endometrium was significantly increased. miR-99b-5p promoted cell proliferation by targeting PCSK9. BMSC-exos promoted endometrial proliferation, and miR-99b-5p inhibited cell apoptosis and promoted EnSC proliferation by targeting PCSK9, providing a new target for the treatment of thin endometrium.

7.
Nat Commun ; 15(1): 3612, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684664

RESUMEN

The etiopathogenesis of diverticulitis, among the most common gastrointestinal diagnoses, remains largely unknown. By leveraging stool collected within a large prospective cohort, we performed shotgun metagenomic sequencing and untargeted metabolomics profiling among 121 women diagnosed with diverticulitis requiring antibiotics or hospitalizations (cases), matched to 121 women without diverticulitis (controls) according to age and race. Overall microbial community structure and metabolomic profiles differed in diverticulitis cases compared to controls, including enrichment of pro-inflammatory Ruminococcus gnavus, 1,7-dimethyluric acid, and histidine-related metabolites, and depletion of butyrate-producing bacteria and anti-inflammatory ceramides. Through integrated multi-omic analysis, we detected covarying microbial and metabolic features, such as Bilophila wadsworthia and bile acids, specific to diverticulitis. Additionally, we observed that microbial composition modulated the protective association between a prudent fiber-rich diet and diverticulitis. Our findings offer insights into the perturbations in inflammation-related microbial and metabolic signatures associated with diverticulitis, supporting the potential of microbial-based diagnostics and therapeutic targets.


Asunto(s)
Diverticulitis , Heces , Microbioma Gastrointestinal , Humanos , Femenino , Persona de Mediana Edad , Diverticulitis/metabolismo , Diverticulitis/microbiología , Heces/microbiología , Anciano , Estudios Prospectivos , Bilophila/metabolismo , Metabolómica , Estudios de Casos y Controles , Clostridiales/metabolismo , Clostridiales/aislamiento & purificación , Ácidos y Sales Biliares/metabolismo , Adulto , Fibras de la Dieta/metabolismo , Metaboloma , Metagenómica/métodos
8.
Front Neurol ; 15: 1331537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523609

RESUMEN

Background: Previous research has yielded conflicting results on the link between epilepsy risk and lipid-lowering medications. The aim of this study is to determine whether the risk of epilepsy outcomes is causally related to lipid-lowering medications predicted by genetics. Methods: We used genetic instruments as proxies to the exposure of lipid-lowering drugs, employing variants within or near genes targeted by these drugs and associated with low-density lipoprotein cholesterol (LDL cholesterol) from a genome-wide association study. These variants served as controlling factors. Through drug target Mendelian randomization, we systematically assessed the impact of lipid-lowering medications, including HMG-CoA reductase (HMGCR) inhibitors, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and Niemann-Pick C1-like 1 (NPC1L1) inhibitors, on epilepsy. Results: The analysis demonstrated that a higher expression of HMGCR was associated with an elevated risk of various types of epilepsy, including all types (OR = 1.17, 95% CI:1.03 to 1.32, p = 0.01), focal epilepsy (OR = 1.24, 95% CI:1.08 to 1.43, p = 0.003), and focal epilepsy documented with lesions other than hippocampal sclerosis (OR = 1.05, 95% CI: 1.01 to 1.10, p = 0.02). The risk of juvenile absence epilepsy (JAE) was also associated with higher expression of PCSK9 (OR = 1.06, 95% CI: 1.02 to 1.09, p = 0.002). For other relationships, there was no reliable supporting data available. Conclusion: The drug target MR investigation suggests a possible link between reduced epilepsy vulnerability and HMGCR and PCSK9 inhibition.

9.
Macromol Biosci ; : e2400009, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490190

RESUMEN

Taxol is one of the most widely used chemotherapeutic agents but is restricted by its poor solubility and severe side effects in clinical practice. To overcome these limitations, pH-sensitive nanoparticles, Acetalated Dextran6k-PEG5k-PLA2k-Taxol (ADPP-PTX), non-pH-sensitive nanoparticles, and Propionic Anhydride modified Dextran6k-PEG5k-PLA2k-Taxol (PDPP-PTX) are developed for the delivery of Taxol. Compared with PDPP-PTX, ADPP-PTX shows higher sensitivity to acid response and greater anti-proliferative effect on cancer cells. In the in vivo study, ADPP-PTX treatment effectively suppresses the growth of tumors, while only half the dose of Taxol is used, which significantly reduces systemic toxicity compared with Taxol and PDPP-PTX.

10.
Mol Cell Biochem ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462549

RESUMEN

Dilated cardiomyopathy (DCM) is a significant cause of heart failure that requires heart transplantation. Fibroblasts play a central role in the fibro-inflammatory microenvironment of DCM. However, their cellular heterogeneity and interaction with immune cells have not been well identified. An integrative analysis was conducted on single-cell RNA sequencing (ScRNA-Seq) data from human left ventricle tissues, which comprised 4 hearts from healthy donors and 6 hearts with DCM. The specific antigen-presenting fibroblast (apFB) was explored as a subtype of fibroblasts characterized by expressing MHCII genes, the existence of which was confirmed by immunofluorescence staining of 3 cardiac tissues from DCM patients with severe heart failure. apFB highly expressed the genes that response to IFN-γ, and it also have a high activity of the JAK-STAT pathway and the transcription factor RFX5. In addition, the analysis of intercellular communication between apFBs and CD4+T cells revealed that the anti-inflammatory ligand-receptor pairs TGFB-TGFR, CLEC2B-KLRB1, and CD46-JAG1 were upregulated in DCM. The apFB signature exhibited a positive correlation with immunosuppression and demonstrated diagnostic and prognostic value when evaluated using a bulk RNA dataset comprising 166 donors and 166 DCM samples. In conclusion, the present study identified a novel subpopulation of fibroblasts that specifically expresses MHCII-encoding genes. This specific apFBs can suppress the inflammation occurring in DCM. Our findings further elucidate the composition of the fibro-inflammatory microenvironment in DCM, and provide a novel therapeutic target.

11.
BMC Genomics ; 25(1): 238, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438984

RESUMEN

BACKGROUND: The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS: In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS: We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Filogenia , Metiltransferasas/genética ,
12.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473757

RESUMEN

Collectin-K1 (CL-K1) is a multifunctional C-type lectin that has been identified as playing a crucial role in innate immunity. It can bind to carbohydrates on pathogens, leading to direct neutralization, agglutination, and/or opsonization, thereby inhibiting pathogenic infection. In this study, we investigated a homolog of CL-K1 (OnCL-K1) in Nile tilapia (Oreochromis niloticus) and its role in promoting the clearance of the pathogen Streptococcus agalactiae (S. agalactiae) and enhancing the antibacterial ability of the fish. Our analysis of bacterial load displayed that OnCL-K1 substantially reduced the amount of S. agalactiae in tissues of the liver, spleen, anterior kidney, and brain in Nile tilapia. Furthermore, examination of tissue sections revealed that OnCL-K1 effectively alleviated tissue damage and inflammatory response in the liver, anterior kidney, spleen, and brain tissue of tilapia following S. agalactiae infection. Additionally, OnCL-K1 was found to decrease the expression of the pro-inflammatory factor IL-6 and migration inhibitor MIF, while increasing the expression of anti-inflammatory factor IL-10 and chemokine IL-8 in the spleen, anterior kidney, and brain tissues of tilapia. Moreover, statistical analysis of survival rates demonstrated that OnCL-K1 significantly improved the survival rate of tilapia after infection, with a survival rate of 90%. Collectively, our findings suggest that OnCL-K1 plays a vital role in the innate immune defense of resisting bacterial infection in Nile tilapia. It promotes the removal of bacterial pathogens from the host, inhibits pathogen proliferation in vivo, reduces damage to host tissues caused by pathogens, and improves the survival rate of the host.


Asunto(s)
Cíclidos , Infecciones Estreptocócicas , Tilapia , Animales , Cíclidos/metabolismo , Streptococcus agalactiae , Regulación de la Expresión Génica , Secuencia de Aminoácidos , Tilapia/metabolismo , Colectinas/genética
13.
J Colloid Interface Sci ; 663: 295-308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38402824

RESUMEN

Developing innovative surface-enhanced Raman scattering (SERS) nanotags continues to attract significant attention due to their unparalleled sensitivity and specificity for in vitro diagnostic and in vivo tumor imaging applications. Here, we report a new class of bright and stable SERS nanotags using alkylmercaptan-PEG (AMP) polymers. Due to its amphiphilic structure and a thiol anchoring group, these polymers strongly absorb onto gold nanoparticles, leading to an inner hydrophobic layer and an outer hydrophilic PEG layer. The inner hydrophobic layer serves to "lock in" the Raman reporter molecules adsorbed on the particle surface via favorable hydrophobic interactions that also allow denser PEG coatings, which "lock out" other molecules from competitive binding or adsorbing to the gold surface, thereby providing superior colloidal and signal stability. The higher grafting densities of AMP polymers compared to conventional thiolated PEG also led to dramatic increases in cellular target selectivity, with specific-to-nonspecific binding ratios reaching beyond an order of magnitude difference. Experimental evaluations and theoretical considerations of dielectric polarization and light scattering indicate that the hydrophobic layer provides a more favorable dielectric environment with less plasmon dampening, greater particle scattering efficiency, and increased Raman reporter polarizability. Accordingly, SERS nanotags with AMP polymer coatings are observed to be considerably brighter (∼10-fold). Furthermore, the AMP-coated SERS nanotag's increased intensity and avidity can boost cellular detection sensitivity by nearly two orders of magnitude.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Espectrometría Raman/métodos , Línea Celular Tumoral , Polímeros
14.
Biomark Res ; 12(1): 29, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419056

RESUMEN

Colorectal cancer (CRC) is a common malignancy worldwide. Angiogenesis and metastasis are the critical hallmarks of malignant tumor. Runt-related transcription factor 1 (RUNX1), an efficient transcription factor, facilitates CRC proliferation, metastasis and chemotherapy resistance. We aimed to investigate the RUNX1 mediated crosstalk between tumor cells and M2 polarized tumor associated macrophages (TAMs) in CRC, as well as its relationship with neoplastic angiogenesis. We found that RUNX1 recruited macrophages and induced M2 polarized TAMs in CRC by promoting the production of chemokine 2 (CCL2) and the activation of Hedgehog pathway. In addition, we found that the M2 macrophage-specific generated cytokine, platelet-derived growth factor (PDGF)-BB, promoted vessel formation both in vitro and vivo. PDGF-BB was also found to enhance the expression of RUNX1 in CRC cell lines, and promote its migration and invasion in vitro. A positive feedback loop of RUNX1 and PDGF-BB was thus formed. In conclusion, our data suggest that RUNX1 promotes CRC angiogenesis by regulating M2 macrophages during the complex crosstalk between tumor cells and TAMs. This observation provides a potential combined therapy strategy targeting RUNX1 and TAMs-related PDGF-BB in CRC.

15.
Parasit Vectors ; 17(1): 69, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368353

RESUMEN

Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Malaria , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores/microbiología , Sistema Inmunológico , Bacterias
16.
Cell Mol Life Sci ; 81(1): 87, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349431

RESUMEN

The existence of cancer stem cells is widely acknowledged as the underlying cause for the challenging curability and high relapse rates observed in various tumor types, including non-small cell lung cancer (NSCLC). Despite extensive research on numerous therapeutic targets for NSCLC treatment, the strategies to effectively combat NSCLC stemness and achieve a definitive cure are still not well defined. The primary objective of this study was to examine the underlying mechanism through which Fructose-1,6-bisphosphatase 1 (FBP1), a gluconeogenic enzyme, functions as a tumor suppressor to regulate the stemness of NSCLC. Herein, we showed that overexpression of FBP1 led to a decrease in the proportion of CD133-positive cells, weakened tumorigenicity, and decreased expression of stemness factors. FBP1 inhibited the activation of Notch signaling, while it had no impact on the transcription level of Notch 1 intracellular domain (NICD1). Instead, FBP1 interacted with NICD1 and the E3 ubiquitin ligase FBXW7 to facilitate the degradation of NICD1 through the ubiquitin-proteasome pathway, which is independent of the metabolic enzymatic activity of FBP1. The aforementioned studies suggest that targeting the FBP1-FBXW7-NICD1 axis holds promise as a therapeutic approach for addressing the challenges of NSCLC recurrence and drug resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Fructosa , Neoplasias Pulmonares/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
17.
Artículo en Inglés | MEDLINE | ID: mdl-38310449

RESUMEN

Chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy has emerged as a revolutionary approach for cancer treatment, especially for hematologic cancers. However, CAR-T therapy has some limitations, including cytokine release syndrome (CRS), immune cellassociated neurologic syndrome (ICANS), and difficulty in targeting solid tumors and delivering allogeneic cell therapy due to graft-versus-host disease (GvHD). Therefore, it is important to explore other cell sources for CAR engineering. Invariant natural killer T (iNKT) cells are a potential target, as they possess powerful antitumor ability and do not recognize mismatched major histocompatibility complexes (MHCs) and protein antigens, thus avoiding the risk of GvHD. CAR-engineered iNKT (CAR-iNKT) cell therapy offers a promising new approach to cancer immunotherapy by overcoming the drawbacks of CAR-T cell therapy while retaining potent antitumor capabilities. This review summarizes the current CAR-iNKT cell products, their functions and phenotypes, and their potential for off-the-shelf cancer immunotherapy.

18.
Neural Regen Res ; 19(9): 1998-2003, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227528

RESUMEN

Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.

19.
Chemistry ; 30(15): e202303895, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198245

RESUMEN

To promote interfacial charge transfer process and accelerate surface water oxidation reaction kinetics for photoelectrochemical (PEC) water splitting over n-type Silicon (n-Si) based photoanodes, herein, starting with surface stabilized n-Si/CoOx , a NiOx /NiFeOOH composite overlayer was coated by atomic layer deposition and spray coating to fabricate the multilayer structured n-Si/CoOx /NiOx /NiFeOOH photoanode. Encouragingly, the obtained n-Si/CoOx /NiOx /NiFeOOH photoanode exhibits much increased PEC activity for water splitting, with onset potential cathodically shifted to ~0.96 V vs. RHE and photocurrent density increased to 22.6 mA cm-2 at 1.23 V vs. RHE for OER, as compared to n-Si/CoOx , even significantly surpassing the counterpart n-Si/CoOx /NiOx /FeOOH and n-Si/CoOx /NiOx /NiOOH photoanodes. Photophysical and electrochemical characterizations evidence that the deposited CoOx /NiOx /NiFeOOH composite overlayer would create large band bending and strong built-in electric field at the introduced cascading interfaces, thereby producing a large photovoltage of 650 mV to efficiently accelerate charge transfer from the n-Si substrate to the electrolyte for water oxidation. Furthermore, the surface oxygen vacancy enriched NiFeOOH overlayer could effectively catalyze the water oxidation reaction by thermodynamically reducing the energy barrier of rate determining step for OER.

20.
Environ Pollut ; 344: 123333, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211877

RESUMEN

Perfluorooctane sulfonate (PFOS) is recognized as an environmental endocrine disruptor with widespread use in industrial manufacturing and daily life, contributing to various public health concerns. However, the precise impacts of PFOS on the ovary and its regulatory mechanisms remain unclear. This study aims to delineate the ovarian toxicity of PFOS and scrutinize its effects on apoptosis and autophagy through modulation of the PI3K/AKT/mTOR pathway in the human granulosa cell line (KGN). Cell viability, assessed via the Cell Counting Kit-8 (CCK8), revealed a dose-dependent reduction in cell viability upon PFOS exposure. Flow cytometry analysis demonstrated an elevated proportion of apoptotic cells following PFOS treatment. Western blot analyses unveiled increased expression of Bax, Cyt c, cleaved caspase-9, and LC3-II/I, coupled with decreased expression of Bcl-2 and p62. Transmission electron microscopy (TEM) observations illustrated a heightened number of autophagosomes induced by PFOS. Molecular docking investigations, in conjunction with Western blot experiments, substantiated PFOS's significant inhibition of the PI3K/AKT/mTOR signaling pathway. These findings collectively underscore that PFOS induces apoptosis and autophagy in KGN cells through modulation of the PI3K/AKT/mTOR pathway, providing experimental evidence for PFOS-induced ovarian toxicity and elucidating the underlying regulatory mechanisms in KGN cells.


Asunto(s)
Fluorocarburos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Autofagia , Células de la Granulosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA