Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(27): 5285-5297, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38950340

RESUMEN

The role of Dy-S coordination in a single-molecule magnet (SMM) is investigated via an ab initio study in a group of mononuclear structures. The SMM performance of this group is well interpreted via a concise criterion consisting of long quantum tunneling of magnetization (QTM) time τQTM and high effective barrier for magnetic reversal Ueff. The best SMMs in the selected group, i.e., 1Dy (CCDC refcode: PUKFAF) and 2Dy (CCDC refcode: NIKSEJ), are just those holding the longest τQTM and the highest Ueff simultaneously. Further analysis based on the crystal field model and ab initio magneto-structural exploration indicates that the influence of Dy-S coordination on the SMM performance of 1Dy is weaker than that of axial Dy-O coordination. Thus, Dy-S coordination is more likely to play an auxiliary role rather than a dominant one. However, if placed at the suitable equatorial position, Dy-S coordination could provide important support for good SMM performance. Consequently, starting from 1Dy, we built two new structures where Dy-S coordination only exists at the equatorial position and two axial positions are occupied by strong Dy-O/Dy-F coordination. Compared to 1Dy and 2Dy, these new ones are predicted to have significantly longer τQTM and higher Ueff, as well as a nearly doubled blocking temperature TB. Thus, they are probable candidates of SMM having clearly improved performance.

2.
Plant Physiol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833579

RESUMEN

The asymmetrical distribution of auxin supports high intensity blue light (HBL)-mediated phototropism. Flavonoids, secondary metabolites induced by blue light and TRANSPARENT TESTA GLABRA1 (TTG1), alter auxin transport. However, the role of TTG1 in HBL-induced phototropism in Arabidopsis (Arabidopsis thaliana) remains unclear. We found that TTG1 regulates HBL-mediated phototropism. HBL-induced degradation of CRYPTOCHROME 1 (CRY1) was repressed in ttg1-1, and depletion of CRY1 rescued the phototropic defects of the ttg1-1 mutant. Moreover, overexpression of CRY1 in a cry1 mutant background led to phototropic defects in response to HBL. These results indicated that CRY1 is involved in the regulation of TTG1-mediated phototropism in response to HBL. Further investigation showed that TTG1 physically interacts with CRY1 via its N-terminus and that the added TTG1 promotes the dimerization of CRY1. The interaction between TTG1 and CRY1 may promote HBL-mediated degradation of CRY1. TTG1 also physically interacted with blue light inhibitor of cryptochrome 1 (BIC1) and Light-Response Bric-a-Brack/Tramtrack/Broad 2 (LRB2), and these interactions either inhibited or promoted their interaction with CRY1. Exogenous gibberellins (GA) and auxins, two key plant hormones that crosstalk with CRY1, may confer the recovery of phototropic defects in the ttg1-1 mutant and CRY1-overexpressing plants. Our results revealed that TTG1 participates in the regulation of HBL-induced phototropism by modulating CRY1 levels, which are coordinated with GA or IAA signaling.

3.
World J Gastrointest Oncol ; 15(12): 2169-2184, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173433

RESUMEN

BACKGROUND: Gastroesophageal reflux disease (GERD) affects approximately 13% of the global population. However, the pathogenesis of GERD has not been fully elucidated. The development of metabolomics as a branch of systems biology in recent years has opened up new avenues for the investigation of disease processes. As a powerful statistical tool, Mendelian randomization (MR) is widely used to explore the causal relationship between exposure and outcome. AIM: To analyze of the relationship between 486 blood metabolites and GERD. METHODS: Two-sample MR analysis was used to assess the causal relationship between blood metabolites and GERD. A genome-wide association study (GWAS) of 486 metabolites was the exposure, and two different GWAS datasets of GERD were used as endpoints for the base analysis and replication and meta-analysis. Bonferroni correction is used to determine causal correlation features (P < 1.03 × 10-4). The results were subjected to sensitivity analysis to assess heterogeneity and pleiotropy. Using the MR Steiger filtration method to detect whether there is a reverse causal relationship between metabolites and GERD. In addition, metabolic pathway analysis was conducted using the online database based MetaboAnalyst 5.0 software. RESULTS: In MR analysis, four blood metabolites are negatively correlated with GERD: Levulinate (4-oxovalerate), stearate (18:0), adrenate (22:4n6) and p-acetamidophenylglucuronide. However, we also found a positive correlation between four blood metabolites and GERD: Kynurenine, 1-linoleoylglycerophosphoethanolamine, butyrylcarnitine and guanosine. And bonferroni correction showed that butyrylcarnitine (odd ratio 1.10, 95% confidence interval: 1.05-1.16, P = 7.71 × 10-5) was the most reliable causal metabolite. In addition, one significant pathways, the "glycerophospholipid metabolism" pathway, can be involved in the pathogenesis of GERD. CONCLUSION: Our study found through the integration of genomics and metabolomics that butyrylcarnitine may be a potential biomarker for GERD, which will help further elucidate the pathogenesis of GERD and better guide its treatment. At the same time, this also contributes to early screening and prevention of GERD. However, the results of this study require further confirmation from both basic and clinical real-world studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...