Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 765
Filtrar
1.
Opt Lett ; 49(11): 3078-3081, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824332

RESUMEN

Diode lasers with high beam quality and high power have many promising applications. However, high beam quality is always in conflict with high power. In this Letter, we theoretically and experimentally confirm the mode instability property of supersymmetric structures at higher operating currents. Meanwhile, we propose a loss-tailoring diode laser based on a supersymmetric structure, which enables the higher-order lateral modes to obtain higher losses, raises the excitation threshold of the higher-order lateral modes, and achieves a stable fundamental-lateral-mode output at higher current operation. The device obtained a quasi-single-lobe lateral far-field distribution with the full width at half maximum (FWHM) of 7.58° at 350 mA under room temperature, which is a 65% reduction compared to the traditional Fabry-Perot (FP) diode lasers. Moreover, the M2 of 2.181@350 mA has an improvement of about 37% over traditional FP and supersymmetric structure lasers.

2.
J Am Chem Soc ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837248

RESUMEN

Electrochemiluminescence (ECL) involves charge transfer between electrochemical redox intermediates to produce an excited state for light emission. Ensuring precise control of charge transfer is essential for decoding ECL fundamentals, yet guidelines on how to achieve this for conventional emitters remain unexplored. Molecular ratchets offer a potential solution, as they enable the directional transfer of energy or chemicals while impeding the reverse movement. Herein, we designed 10 pairs of imine-based covalent organic frameworks as reticular ratchets to delicately manipulate the intrareticular charge transfer for directing ECL transduction from electric and chemical energies. Aligning the donor and acceptor (D-A) directions with the imine dipole effectively facilitates charge migration, whereas reversing the D-A direction impedes it. Notably, the ratchet effect of charge transfer directionality intensified with increasing D-A contrast, resulting in a remarkable 680-fold improvement in the ECL efficiency. Furthermore, dipole-controlled exciton binding energy, electron/hole decay kinetics, and femtosecond transient absorption spectra identified the electron transfer tendency from the N-end toward the C-end of reticular ratchets during ECL transduction. An exponential correlation between the ECL efficiency and the dipole difference was discovered. Our work provides a general approach to manipulate charge transfer and design next-generation electrochemical devices.

3.
Eur J Med Chem ; 274: 116533, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38838548

RESUMEN

Antiestrogen/histone deacetylase inhibitor (HDACi) hybrids were designed by merging structures of raloxifene with suberoylanilide hydroxamic acid, incorporating the HDACi unit into the phenolic ring of the antiestrogen. These hybrids were synthesized with a range of HDACi chain lengths and assessed for bifunctionality. Four hybrids, 21 (YW471), 22 (YW490), 27(YW486), and 28 (YW487) showed good potency both as antiestrogens in a BRET assay and in a fluorometric HDACi assay. The antiproliferative activity of the hybrids was demonstrated in both ER+ MCF7 and ER- MDA-MB-231 breast cancer cell lines.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38841745

RESUMEN

Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.

5.
Sci Rep ; 14(1): 12709, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830938

RESUMEN

To assess the efficacy of stent grafts (SGs) in managing central venous obstruction disease (CVOD) in hemodialysis (HD) patients with arteriovenous (AV) access, and to identify predictive factors influencing the SG treatment outcomes. HD subjects with CVOD who underwent SGs placement at our center between August 2018 and June 2022 were enrolled. Survival curve analysis using the Kaplan-Meier method and log-rank test was performed. Cox proportional hazards regression analysis was employed to identify predictive factors associated with outcomes. A total of 59 SG implantation procedures for CVOD were analyzed, comprising 30 cases of stenosis and 29 cases of occlusion. The access circuit primary patency (ACPP) at 6, 12, and 24 months post-SG placement were 80.9%, 53.8%, and 31.4%, respectively, while, the target lesion primary patency (TLPP) were 91.3%, 67.6%, and 44.5%, respectively. Subgroup analysis revealed higher TLPP in the stenosis group compared to the occlusion group, although the difference was not statistically significant (P = 0.165). The TLPP was significantly improved by SG placement in those who had antecedent balloon dilations (P < 0.001). Cox proportional hazards regression identified target lesion length ≥ 30 mm and procedure defects as independent predictors of lower TLPP after SG treatment for CVOD in HD patients. SG placement demonstrates safety and efficacy in managing CVOD among HD patients, leading to improved TLPP of endovascular therapy (EVT) for CVOD. Notably, long target lesions (≥ 30 mm) and procedure defects emerged as predictive factors influencing TLPP.


Asunto(s)
Fallo Renal Crónico , Diálisis Renal , Stents , Grado de Desobstrucción Vascular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Fallo Renal Crónico/terapia , Fallo Renal Crónico/complicaciones , Anciano , Resultado del Tratamiento , Estudios Retrospectivos , Derivación Arteriovenosa Quirúrgica/efectos adversos , Constricción Patológica/cirugía , Adulto , Estimación de Kaplan-Meier , Modelos de Riesgos Proporcionales , Oclusión de Injerto Vascular/etiología
6.
Front Immunol ; 15: 1402523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863715

RESUMEN

We described a challenging case of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in a young girl. Despite enduring months of reduced consciousness with ongoing antibody presence, she ultimately exhibited remarkable improvement within a 5-year follow-up period. Additionally, we conducted a concise review of relevant literature on anti-NMDAR encephalitis, with a specific focus on anti-NMDAR antibodies. Our findings enhance the clinical comprehension of anti-NMDAR encephalitis and offer valuable insights to clinicians for its management.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Autoanticuerpos , Humanos , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Femenino , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Receptores de N-Metil-D-Aspartato/inmunología , Niño , Trastornos de la Conciencia/etiología , Trastornos de la Conciencia/inmunología
7.
Life Sci ; : 122815, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866215

RESUMEN

Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.

8.
Viruses ; 16(5)2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38793551

RESUMEN

Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Antígeno HLA-A2 , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Péptidos , Humanos , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/genética , Péptidos/inmunología , Péptidos/química , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Antígeno HLA-A2/inmunología , Antígeno HLA-A2/genética , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/virología , Antígeno HLA-A11/inmunología , Antígeno HLA-A11/genética , Proteómica/métodos , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/virología , China , Espectrometría de Masas en Tándem , Epítopos de Linfocito T/inmunología , Línea Celular Tumoral
9.
Nat Commun ; 15(1): 3913, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724558

RESUMEN

Checkerboard lattices-where the resulting structure is open, porous, and highly symmetric-are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air-water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials.

10.
Sci Total Environ ; 931: 172904, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703845

RESUMEN

Enhanced nitrogen (N) input is expected to influence the soil phosphorus (P) cycling through biotic and abiotic factors. Among these factors, soil microorganisms play a vital role in regulating soil P availability. However, the divergent contribution of functional microorganisms to soil P availability in the rhizosphere and bulk soil under N addition remains unclear. We conducted an N addition experiment with four N input rates (0, 5, 10, and 15 g N m-2 year-1) in an alpine meadow over three years. Metagenomics was employed to investigate the functional microbial traits in the rhizosphere and bulk soil. We showed that N addition had positive effects on microbial functional traits related to P-cycling in the bulk and rhizosphere soil. Specifically, high N addition significantly increased the abundance of most microbial genes in the bulk soil but only enhanced the abundance of five genes in the rhizosphere soil. The soil compartment, rather than the N addition treatment, was the dominant factor explaining the changes in the diversity and network of functional microorganisms. Furthermore, the abundance of functional microbial genes had a profound effect on soil available P, particularly in bulk soil P availability driven by the ppa and ppx genes, as well as rhizosphere soil P availability driven by the ugpE gene. Our results highlight that N addition stimulates the microbial potential for soil P mobilization in alpine meadows. Distinct microbial genes play vital roles in soil P availability in bulk and rhizosphere soil respectively. This indicates the necessity for models to further our knowledge of P mobilization processes from the bulk soil to the rhizosphere soil, allowing for more precise predictions of the effects of N enrichment on soil P cycling.


Asunto(s)
Pradera , Nitrógeno , Fósforo , Rizosfera , Microbiología del Suelo , Suelo , Fósforo/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , Suelo/química , Microbiota
11.
Sci Rep ; 14(1): 12228, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806610

RESUMEN

DNA topoisomerase II alpha (TOP2A) expression, gene alterations, and enzyme activity have been studied in various malignant tumors. Abnormal elevation of TOP2A expression is considered to be related to the development of non-small cell lung cancer (NSCLC). However, its association with tumor metastasis and its mode of action remains unclear. Bioinformatics, real-time quantitative PCR, immunohistochemistry and immunoblotting were used to detect TOP2A expression in NSCLC tissues and cells. Cell migration and invasion assays as well as cytoskeletal staining were performed to analyze the effects of TOP2A on the motility, migration and invasion ability of NSCLC cells. Cell cycle and apoptosis assays were used to verify the effects of TOP2A on apoptosis as well as cycle distribution in NSCLC. TOP2A expression was considerably upregulated in NSCLC and significantly correlated with tumor metastasis and the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC. Additionally, by interacting with the classical ligand Wnt3a, TOP2A may trigger the canonical Wnt signaling pathway in NSCLC. These observations suggest that TOP2A promotes EMT in NSCLC by activating the Wnt/ß-catenin signaling pathway and positively regulates malignant events in NSCLC, in addition to its significant association with tumor metastasis. TOP2A promotes the metastasis of NSCLC by stimulating the canonical Wnt signaling pathway and inducing EMT. This study further elucidates the mechanism of action of TOP2A, suggesting that it might be a potential therapeutic target for anti-metastatic therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , ADN-Topoisomerasas de Tipo II , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Proteínas de Unión a Poli-ADP-Ribosa , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transición Epitelial-Mesenquimal/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Movimiento Celular/genética , Línea Celular Tumoral , Metástasis de la Neoplasia , Vía de Señalización Wnt , Apoptosis , Masculino , Femenino , Persona de Mediana Edad , Proteína Wnt3A/metabolismo , Proteína Wnt3A/genética
12.
Toxicol Appl Pharmacol ; 487: 116957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735590

RESUMEN

Heart failure is associated with histone deacetylase (HDAC) regulation of gene expression, the inhibition of which is thought to be beneficial for heart failure therapy. Here, we explored the cardioprotective effects and underlying mechanism of a novel selenium-containing HDAC inhibitor, Se-SAHA, on isoproterenol (ISO)-induced heart failure. We found that pretreatment with Se-SAHA attenuated ISO-induced cardiac hypertrophy and fibrosis in neonatal rat ventricular myocytes (NRVMs). Se-SAHA significantly attenuated the generation of ISO-induced reactive oxygen species (ROS) and restored the expression levels of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) in vitro. Furthermore, Se-SAHA pretreatment prevented the accumulation of autophagosomes. Se-SAHA reversed the high expression of HDAC1 and HDAC6 induced by ISO incubation. However, after the addition of the HDAC agonist, the effect of Se-SAHA on blocking autophagy was inhibited. Using ISO-induced mouse models, cardiac ventricular contractile dysfunction, hypertrophy, and fibrosis was reduced treated by Se-SAHA. In addition, Se-SAHA inhibited HDAC1 and HDAC6 overexpression in ISO-treated mice. Se-SAHA treatment significantly increased the activity of SOD2 and improved the ability to eliminate free radicals. Se-SAHA hindered the excessive levels of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 in heart failure mice. Collectively, our results indicate that Se-SAHA exerts cardio-protection against ISO-induced heart failure via antioxidative stress and autophagy inhibition.


Asunto(s)
Autofagia , Insuficiencia Cardíaca , Inhibidores de Histona Desacetilasas , Isoproterenol , Ratones Endogámicos C57BL , Miocitos Cardíacos , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Isoproterenol/toxicidad , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Autofagia/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Estrés Oxidativo/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Masculino , Ratas , Ratones , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Fibrosis , Células Cultivadas , Cardiomegalia/inducido químicamente , Cardiomegalia/prevención & control , Cardiomegalia/patología
13.
Vet Microbiol ; 294: 110108, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729093

RESUMEN

H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.


Asunto(s)
Anticuerpos Antivirales , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Ratones Endogámicos BALB C , Vacunas de Partículas Similares a Virus , Animales , Pollos/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Glicosilación , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Gripe Aviar/virología , Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Femenino , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Citocinas , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología
14.
Transl Cancer Res ; 13(4): 1685-1694, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737698

RESUMEN

Background: The causal link between kidney cancer and omega-3/6 (ω-3/6) fatty acids is yet to be clearly established. Therefore, the objective of our study was to investigate these potential causal relationships. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to investigate the possible causal association between ω-3/6 fatty acids and kidney cancer. We utilized the random effect inverse variance weighted (IVW) method as our primary analytical approach for the two-sample MR analysis. In addition, sensitivity analyses such as heterogeneity tests, pleiotropy analyses, and leave-one-out analyses were performed to assess the robustness of the MR analysis results. Results: The IVW method showed statistically significant associations between ω-3 and ω-6 fatty acids and increased risk of kidney cancer. The result for ω-3 and ω-6 were [odds ratio (OR) =1.27; 95% confidence interval (CI): 1.04-1.55; P=0.02] and (OR =1.56; 95% CI: 1.17-2.09; P=0.003), respectively. Moreover, in the results of sensitivity analyses, no apparent horizontal gene pleiotropy nor heterogeneity was observed. After performing "the leave-one-out" sensitivity analysis of the data one by one, no single nucleotide polymorphisms (SNPs) sites in each instrumental variable (IV) were found to have greatly affected the disease outcome. Conclusions: Elevated serum ω-3/6 fatty acids levels are causally associated with an increased risk of kidney cancer. Therefore, it is crucial to monitor dietary intake and properly intervene to lower these levels in those at risk of kidney cancer.

15.
Chin Med J (Engl) ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738689

RESUMEN

ABSTRACT: In humans, the liver is a central metabolic organ with a complex and unique histological microenvironment. Hepatocellular carcinoma (HCC), which is a highly aggressive disease with a poor prognosis, accounts for most cases of primary liver cancer. As an emerging hallmark of cancers, metabolic reprogramming acts as a runaway mechanism that disrupts homeostasis of the affected organs, including the liver. Specifically, rewiring of the liver metabolic microenvironment, including lipid metabolism, is driven by HCC cells, propelling the phenotypes of HCC cells, including dissemination, invasion, and even metastasis in return. The resulting formation of this vicious loop facilitates various malignant behaviors of HCC further. However, few articles have comprehensively summarized lipid reprogramming in HCC metastasis. Here, we have reviewed the general situation of the liver microenvironment and the physiological lipid metabolism in the liver, and highlighted the effects of different aspects of lipid metabolism on HCC metastasis to explore the underlying mechanisms. In addition, we have recapitulated promising therapeutic strategies targeting lipid metabolism and the effects of lipid metabolic reprogramming on the efficacy of HCC systematical therapy, aiming to offer new perspectives for targeted therapy.

16.
Acta Pharmacol Sin ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760543

RESUMEN

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.

17.
Small ; : e2401307, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801308

RESUMEN

With the guidance of density functional theory (DFT), a high-performance hafnium (Hf) cathode for an air/water vapor plasma torch is designed and the concepts and principles for high performance are elucidated. A quasi-nanocrystalline hexagonal close-packed (HCP) Hf-La2O3 cathode based on these design principles is successfully fabricated via a powder metallurgy route. Under identical voltage and temperature conditions, the thermal emission current density of this quasi-nanocrystalline Hf-La2O3 cathode is ≈20 times greater than that of conventional Hf cathodes. Additionally, its cathodic lifespan is significantly extended. Quasi-nanocrystalline Hf-La2O3 products are manufactured into cathode devices with standard dimensions. This fabrication process is straightforward, requires minimal doped oxides, and is cost-effective. Consequently, the approach offers substantial performance enhancements over traditional Hf melting methods without incurring significantly additional costs.

18.
Int Immunopharmacol ; 133: 112065, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608448

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.


Asunto(s)
Núcleo Celular , Citoplasma , Proteína 1 Similar a ELAV , Interleucina-1beta , Interleucina-8 , Factor de Transcripción STAT3 , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Línea Celular Tumoral , Óxidos S-Cíclicos/farmacología , Transporte de Proteínas , Transducción de Señal , Transporte Activo de Núcleo Celular , Sistemas CRISPR-Cas
19.
J Diabetes ; 16(4): e13549, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584275

RESUMEN

AIMS: Management of blood glucose fluctuation is essential for diabetes. Exercise is a key therapeutic strategy for diabetes patients, although little is known about determinants of glycemic response to exercise training. We aimed to investigate the effect of combined aerobic and resistance exercise training on blood glucose fluctuation in type 2 diabetes patients and explore the predictors of exercise-induced glycemic response. MATERIALS AND METHODS: Fifty sedentary diabetes patients were randomly assigned to control or exercise group. Participants in the control group maintained sedentary lifestyle for 2 weeks, and those in the exercise group specifically performed combined exercise training for 1 week. All participants received dietary guidance based on a recommended diet chart. Glycemic fluctuation was measured by flash continuous glucose monitoring. Baseline fat and muscle distribution were accurately quantified through magnetic resonance imaging (MRI). RESULTS: Combined exercise training decreased SD of sensor glucose (SDSG, exercise-pre vs exercise-post, mean 1.35 vs 1.10 mmol/L, p = .006) and coefficient of variation (CV, mean 20.25 vs 17.20%, p = .027). No significant change was observed in the control group. Stepwise multiple linear regression showed that baseline MRI-quantified fat and muscle distribution, including visceral fat area (ß = -0.761, p = .001) and mid-thigh muscle area (ß = 0.450, p = .027), were significantly independent predictors of SDSG change in the exercise group, as well as CV change. CONCLUSIONS: Combined exercise training improved blood glucose fluctuation in diabetes patients. Baseline fat and muscle distribution were significant factors that influence glycemic response to exercise, providing new insights into personalized exercise intervention for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Glucemia , Automonitorización de la Glucosa Sanguínea , Ejercicio Físico/fisiología , Músculo Esquelético
20.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38614382

RESUMEN

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Asunto(s)
Proteínas de Ciclo Celular , Muerte Celular , Quinasa Tipo Polo 1 , Complejo de la Endopetidasa Proteasomal , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Humanos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Muerte Celular/efectos de los fármacos , Ratones , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Ratones Desnudos , Pteridinas/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Activación Enzimática/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA