RESUMEN
MnSO4-modified biochar (Mn-BC) was synthesized to remove berberine hydrochloride (BH) from wastewater by utilizing tea waste as raw material and MnSO4 as modifier. Brunel Emmett Taylor (BET) analysis reveals that the specific surface area (SSA) and average pore size (Dave) of Mn-BC are 1.4 and 7 times higher than those of pristine biochar apart, attributing to the dissociation effect can promote the dispersion of MnSO4 in the pores of the biochar. Meanwhile, the doping of Mn not only introduces additional oxygen-containing functional groups (OCFGs), but also modulates the π electron density. Furthermore, Response surface method (RSM) analysis reveals that Mn-BC dosage has the most significant effect on BH removal, followed by BH concentration and pH value. Kinetic and isothermal studies reveal that the BH adsorption process of Mn-BC was mainly dominated by chemical and monolayer adsorption. Meanwhile, density functional theory (DFT) calculations confirm the contribution of Mn doping to the conjugation effect in the adsorption system. Originally proposed Mn-BC is one potentially propitious material to eliminate BH from wastewater, meanwhile this also provides a newfangled conception over the sustainable utilization of tea waste resources.
Asunto(s)
Berberina , Carbón Orgánico , Berberina/química , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/química , Propiedades de Superficie , Manganeso/química , Aguas Residuales/química , Teoría Funcional de la Densidad , Tamaño de la Partícula , Compuestos de Manganeso/química , CinéticaRESUMEN
The introduction of alien species poses a serious threat to native biodiversity, and mountain lake systems in the southwest of China are particularly vulnerable to the introduction of non-native fish. The prey naivety hypothesis states that native species may not be able to recognize novel introduced species due to a lack of common evolutionary background and therefore become easy targets, so the impacts of non-native fish on mountain endemic amphibians need to be urgently assessed. In an ex-situ experiment, we exposed the tadpoles of the Chaochiao Brown Frog (Rana chaochiaoensis), endemic to western China, to kairomones of both native and translocated fish species, and their phenotypic and genetic response patterns were compared. The results revealed significant phenotypic plasticity responses in total length (TOL), tail length (TL), and tail muscle width (TW) of tadpoles induced by native fish kairomone, while tadpoles exposed to translocated fish kairomone exhibited weaker phenotypic changes. At the transcriptional level, the number of differently expressed genes (DEGs) in the native fish treatment was 3.1-fold (liver) and 52.6-fold (tail muscle) higher than in the translocated fish treatment, respectively. There were more unique DEGs in the native fish treatment, primarily enriched in terms and pathways related to stress response, energy metabolism, and muscle development. The study revealed a lack of risk perception by native tadpoles toward novel non-native fish, providing new evidence for the prey naivety hypothesis from both phenotypic and molecular perspectives. Future conservation efforts should prioritize assessing the impacts of non-native fish on alpine and subalpine threatened and narrowly distributed amphibians. Additionally, prevention, early warning, monitoring, and removal of non-native fish should be carried out as soon as possible.
RESUMEN
Introduction: Nanofibrous spheres, with their injectable format and biomimetic three-dimensional topologies that emulate the complexity of natural extracellular environments, have become increasingly attractive for applications in biomedical and regenerative medicine. Our research contributes to this growing field by detailing the design and fabrication of a novel series of polylactic acid/nano-hydroxyapatite (PLA/nHA) hybrid nanofibrous spheres. Methods: These advanced structures were created by integrating electrospinning and electrospray techniques, which allowed for precise control over the nanofibrous spheres, especially in size. We have conducted a comprehensive investigation into the nanofibrous spheres' capacity to deliver stem cells efficiently and maintain their viability post-implantation, as well as their potential to induce osteogenic differentiation. Results and Discussion: The results show that these nanofibrous spheres are biocompatible and injectable, effectively supporting the attachment, growth, and differentiation of bone marrow-derived mesenchymal stem cells while aiding in their targeted transportation to bone defect areas to execute their regenerative functions. The findings of this study could significantly impact the future development of biocompatible materials for a range of therapeutic applications, including bone tissue engineering and regenerative therapy.
RESUMEN
In this study, amino-modified graphene oxide(NGO) was prepared by introducing amino functional groups. Based on the cross-linking between Ca(II) and sodium alginate (SA), associated with dense slit-like pore resulted from the nano-sheet accumulation of NGO and montmorillonite (MMT), composite aerogels (NGM) with stable pore structure were constructed, thus it realized the selective recovery of hydrated copper ions in complex wastewater systems. Raman analysis and density functional theory calculation confirmed the construction of amino-modified defect GO and significantly improved its chemical reactivity, which laid the foundation for the construction of slit pore structure of NGM (SEM can confirm). At the same time, it proposed that the good selective adsorption of Cu(II) on NGM was related to the synergism of strong electrostatic force, ion exchange and complexation based on the characterizations of FT-IR and XPS. In order to realize the value-added utilization of NGM aerogel (NGMC) after adsorbing Cu(II), NGMC was used as a catalyst to degrade organic pollutants in wastewater. Systematic experiments shown that NGMC can degrade organic pollutants with a degradation efficiency >80 %. In summary, NGM had a broad application prospect for selective recovery of Cu(II) from complex wastewater systems without second pollution.
Asunto(s)
Alginatos , Cobre , Geles , Grafito , Contaminantes Químicos del Agua , Cobre/química , Alginatos/química , Adsorción , Geles/química , Grafito/química , Contaminantes Químicos del Agua/química , Catálisis , Purificación del Agua/métodos , Aguas Residuales/químicaRESUMEN
Platelet-rich plasma (PRP) intrauterine infusion has been demonstrated to be effective in treating thin endometrium and achieving pregnancy. However, the rapid release of growth factors limits its effectiveness in clinical applications, and thus, multiple intrauterine infusions are often required to achieve therapeutic efficacy. In this study, a GelMA hydrogel microsphere biomaterial is developed using droplet microfluidics to modify the delivery mode of PRP and thus prolong its duration of action. Its biocompatibility is confirmed through both in vivo and in vitro studies. Cell experiments show that PRP-loaded microspheres significantly enhance cell proliferation, migration, and angiogenesis. In vivo experiments show that the effects of PRP-loaded microspheres on repairing the endometrium and restoring fertility in mice could achieve the impact of triple PRP intrauterine infusions. Further mechanistic investigations reveal that PRP could facilitate endometrial repair by regulating the expression of E2Fs, a group of transcription factors. This study demonstrates that hydrogel microspheres could modify the delivery of PRP and prolong its duration of action, enabling endometrial repair and functional reconstruction. This design avoids repeated intrauterine injections of PRP in the clinic, reduces the number of patient visits, and provides a new avenue for clinical treatment of thin endometrium.
RESUMEN
Oral leukoplakia (OLK) is the most common oral precancerous lesion, and 3%-17% of OLK patients progress to oral squamous cell carcinoma. OLK is susceptible to recurrence and has no effective treatment. However, conventional drugs have significant side effects and limitations. Therefore, it is important to identify drugs that target OLK. In this study, scavenger receptor A (SR-A) was found to be abnormally highly expressed in the oral mucosal epithelial cells of OLK patients, whereas molecular biology studies revealed that low molecular weight fucoidan (LMWF) promoted apoptosis of dysplastic oral keratinocytes (DOK) and inhibited the growth and migration of DOK, and the inhibitory effect of LMWF on OLK was achieved by regulating the SR-A/Wnt signaling axis and related genes. Based on the above results and the special situation of the oral environment, we constructed LMWF/poly(caprolactone-co-lactide) nanofiber membranes with different structures for the in-situ treatment of OLK using electrospinning technology. The results showed that the nanofiber membranes with a shell-core structure had the best physicochemical properties, biocompatibility, and therapeutic effect, which optimized the LMWF drug delivery and ensured the effective concentration of the drug at the target point, thus achieving precise treatment of local lesions in the oral cavity. This has potential application value in inhibiting the development of OLK.
RESUMEN
Biomaterials are widely used in regenerative medicine to repair full-thickness skin defect wounds. The adipose-derived stromal vascular fraction (SVF) shows pro-regenerative properties, however, the ex vivo biological activity of SVF is suppressed due to the lack of an external scaffold. Tilapia skin, as a sustained and recyclable biomaterial with low immunogenicity, was applied in the preparation of a hydrogel. The mixture of tilapia skin-derived gelatin and methacrylic anhydride as a scaffold facilitated the paracrine function of SVF and exerted a synergistic effect with SVF to promote wound healing. In this study, 30% (w/v) SVF was added to methacrylate-functionalized tilapia skin gelatin and subsequently exposed to UV irradiation to form a three-dimensional nano-scaffolding composite hydrogel (FG-SVF-3). The effects of paracrine growth factors, neovascularization, and collagen production on wound healing were extensively discussed. FG-SVF-3 displayed a pronounced wound healing ability via in vivo wound models. The FG-SVF-3 hydrogel enhanced the biocompatibility and the expression of EGF, bFGF, and VEGF. FG-SVF-3, as a promising wound dressing, exhibited superior ability to accelerate wound healing, skin regeneration, and wound closure.
RESUMEN
The healing of skin wounds is a continuous and coordinated process, typically accompanied by microbial colonization and growth. This may result in wound infection and subsequent delay in wound healing. Therefore, it is of particular importance to inhibit the growth of microorganisms in the wound environment. In this study, magnesium hydroxide-doped polycaprolactone (PCL/MH) nanofibrous spheres were fabricated by electrospinning and electrospray techniques to investigate their effects on infected wound healing. The prepared PCL/MH nanofibrous spheres had good porous structure and biocompatibility, providing a favorable environment for the delivery and proliferation of adipose stem cells. The incorporation of MH significantly enhanced the antimicrobial properties of the spheres, in particular, the inhibition of the growth of S. aureus and E. coli. We showed that such PCL/MH nanofibrous spheres had good antimicrobial properties and effectively promoted the regeneration of infected wound tissues, which provided a new idea for the clinical treatment of infected wounds.
Asunto(s)
Escherichia coli , Hidróxido de Magnesio , Nanofibras , Poliésteres , Piel , Staphylococcus aureus , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Nanofibras/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Poliésteres/química , Piel/efectos de los fármacos , Piel/microbiología , Piel/lesiones , Animales , Hidróxido de Magnesio/química , Hidróxido de Magnesio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Humanos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Andamios del Tejido/químicaRESUMEN
Bone defects typically result in bone nonunion, delayed or nonhealing, and localized dysfunction, and commonly used clinical treatments (i.e., autologous and allogeneic grafts) have limited results. The multifunctional bone tissue engineering scaffold provides a new treatment for the repair of bone defects. Herein, a three-dimensional porous composite scaffold with stable mechanical support, effective antibacterial and hemostasis properties, and the ability to promote the rapid repair of bone defects was synthesized using methacrylated carboxymethyl chitosan and icariin-loaded poly-l-lactide/gelatin short fibers (M-CMCS-SFs). Icariin-loaded SFs in the M-CMCS scaffold resulted in the sustained release of osteogenic agents, which was beneficial for mechanical reinforcement. Both the porous structure and the use of chitosan facilitate the effective absorption of blood and fluid exudates. Moreover, its superior antibacterial properties could prevent the occurrence of inflammation and infection. When cultured with bone mesenchymal stem cells, the composite scaffold showed a promotion in osteogenic differentiation. Taken together, such a multifunctional composite scaffold showed comprehensive performance in antibacterial, hemostasis, and bone regeneration, thus holding promising potential in the repair of bone defects and related medical treatments.
Asunto(s)
Antibacterianos , Regeneración Ósea , Quitosano , Flavonoides , Osteogénesis , Andamios del Tejido , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Antibacterianos/farmacología , Antibacterianos/química , Animales , Flavonoides/farmacología , Flavonoides/química , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Hemostasis/efectos de los fármacos , Gelatina/química , Gelatina/farmacología , Porosidad , Ingeniería de Tejidos , Poliésteres/química , Poliésteres/farmacologíaRESUMEN
Advancements in tissue engineering are crucial for successfully healing tendon-bone connections, especially in situations like anterior cruciate ligament (ACL) restoration. This study presents a new and innovative three-dimensional scaffold, reinforced with nanofibers, that is specifically intended for acellular tendon complexes. The scaffold consists of a distinct layered arrangement comprising an acellular tendon core, a middle layer of polyurethane/type I collagen (PU/Col I) yarn, and an outside layer of poly (L-lactic acid)/bioactive glass (PLLA/BG) nanofiber membrane. Every layer is designed to fulfill specific yet harmonious purposes. The acellular tendon core is a solid structural base and a favorable environment for tendon cell functions, resulting in considerable tensile strength. The central PU/Col I yarn layer is vital in promoting the tendinogenic differentiation of stem cells derived from tendons and increasing the expression of critical tendinogenic factors. The external PLLA/BG nanofiber membrane fosters the process of bone marrow mesenchymal stem cells differentiating into bone cells and enhances the expression of markers associated with bone formation. Our scaffold's biocompatibility and multi-functional design were confirmed through extensive in vivo evaluations, such as histological staining and biomechanical analyses. These assessments combined showed notable enhancements in ACL repair and healing. This study emphasizes the promise of multi-layered nanofiber scaffolds in orthopedic tissue engineering and also introduces new possibilities for the creation of improved materials for regenerating the tendon-bone interface.
RESUMEN
The massive growth of various microorganisms on the orthodontic bracket can form plaques and cause diseases. A novel amine-terminated hyperbranched zirconium-polysiloxane (HPZP) antimicrobial coating was developed for an orthodontic stainless steel tank (SST). After synthesizing HPZP and HPZP-Ag coatings, their structures were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thickness measurement, contact angle detection, mechanical stability testing, and corrosion testing. The cell toxicity of the two coatings to human gingival fibroblasts (hGFs) and human oral keratinocytes (hOKs) was detected by cell counting kit eight assays, and SST, HPZP@SST, and HPZP-Ag@SST were cocultured with Staphylococcus aureus, Escherichia coli, and Streptococcus mutans for 24 hr to detect the antibacterial properties of the coatings, respectively. The results show that the coatings are about 10 µm, and the water contact angle of HPZP coating is significantly higher than that of HPZP-Ag coating (P < 0.01). Both coatings can be uniformly and densely distributed on SST and have good mechanical stability and corrosion resistance. The cell counting test showed that HPZP coating and HPZP-Ag coating were less toxic to cells compared with SST, and the toxicity of HPZP-Ag coating was greater than that of HPZP coating, with the cell survival rate greater than 80% after 72 hr cocultured with hGFs and hOKs. The antibacterial test showed that the number of bacteria on the surface of different materials was ranked from small to large: HPZP@SST < HPZP-Ag@SST < SST and 800 µg/mL HPZP@SST showed a better bactericidal ability than 400 µg/mL after cocultured with S. aureus, E. coli, and S. mutans, respectively (all P < 0.05). The results showed that HPZP coating had a better effect than HPZP-Ag coating, with effective antibacterial and biocompatible properties, which had the potential to be applied in orthodontic process management.
Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Soportes Ortodóncicos , Siloxanos , Acero Inoxidable , Circonio , Acero Inoxidable/química , Acero Inoxidable/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Soportes Ortodóncicos/microbiología , Circonio/química , Circonio/farmacología , Siloxanos/química , Siloxanos/farmacología , Fibroblastos/efectos de los fármacos , Ensayo de Materiales , Aminas/química , Aminas/farmacología , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Escherichia coli/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Encía/citología , Encía/efectos de los fármacosRESUMEN
Purpose: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its related mortality is increasing at an unprecedented rate. Traditional Chinese medicine (TCM) has been shown to offer potential for early prevention and treatment of NAFLD. The new mechanism of "Shenling Baizhu San" (SLBZS) is examined in this study for the prevention and treatment of NAFLD at the preclinical level. Methods: Male C57BL/6J mice were randomly divided into three groups: normal diet (ND), western diet + CCl4 injection (WDC), and SLBZS intervention (WDC + SLBZS). Body weights, energy intake, liver enzymes, pro-inflammatory factors, and steatosis were recorded in detail. Meanwhile, TPH1, 5-HT, HTR2A, and HTR2B were tested using qRT-PCR or ELISA. Dynamic changes in the gut microbiota and metabolites were further detected through the 16S rRNA gene and untargeted metabolomics. Results: SLBZS intervention for 6 weeks could reduce the serum and liver lipid profiles, glucose, and pro-inflammatory factors while improving insulin resistance and liver function indexes in the mice, thus alleviating NAFLD in mice. More importantly, significant changes were found in the intestinal TPH-1, 5-HT, liver 5-HT, and related receptors HTR2A and HTR2B. The 16S rRNA gene analysis suggested that SLBZS was able to modulate the disturbance of gut microbiota, remarkably increasing the relative abundance of probiotics (Bifidobacterium and Parvibacter) and inhibiting the growth of pro-inflammatory bacteria (Erysipelatoclostridium and Lachnoclostridium) in mice with NAFLD. Combined with metabolomics in positive- and negative-ion-mode analyses, approximately 50 common differential metabolites were selected via non-targeted metabolomics detection, which indicated that the targeting effect of SLBZS included lipid metabolites, bile acids (BAs), amino acids (AAs), and tryptophan metabolites. In particular, the lipid metabolites 15-OxEDE, vitamin D3, desoxycortone, and oleoyl ethanol amide were restored by SLBZS. Conclusion: Integrating the above results of multiple omics suggests that SLBZS ameliorates NAFLD via specific gut microbiota, gut-derived 5-HT, and related metabolites to decrease fat accumulation in the liver and inflammatory responses.
RESUMEN
A guided bone regeneration (GBR) membrane can act as a barrier to prevent the invasion and interference from foreign soft tissues, promoting infiltration and proliferation of osteoblasts in the bone defect area. Herein, a composite scaffold with dual functions of osteogenesis and antibacterial effects was prepared for GBR. A polycaprolactone (PCL)/nano-hydroxyapatite (n-HA) aerogel produced by electrospinning and freeze-drying techniques was fabricated as the loose layer of the scaffold, while a PCL nanofiber membrane was used as the dense layer. Chitosan (CS) solution served as a middle layer to provide mechanical support and antibacterial effects between the two layers. Morphological results showed that the loose layer had a porous structure with n-HA successfully dispersed in the aerogels, while the dense layer possessed a sufficiently dense structure. In vitro antibacterial experiments illustrated that the CS solution in the middle layer stabilized the scaffold structure and endowed the scaffold with good antibacterial properties. The cytocompatibility results indicated that both fibroblasts and osteoblasts exhibited superior cell activity on the dense and loose layers, respectively. In particular, the dense layer made of nanofibers could work as a barrier layer to inhibit the infiltration of fibroblasts into the loose layer. In vitro osteogenesis analysis suggested that the PCL/n-HA aerogel could enhance the bone induction ability of bone mesenchymal stem cells, which was confirmed by the increased expression of the alkaline phosphatase activity. The loose structure facilitated the infiltration and migration of bone mesenchymal stem cells for better osteogenesis. In summary, such a composite scaffold exhibited excellent osteogenic and antibacterial properties as well as the barrier effect, thus holding promising potential for use as GBR materials.
Asunto(s)
Antibacterianos , Regeneración Ósea , Quitosano , Durapatita , Nanofibras , Osteoblastos , Osteogénesis , Poliésteres , Quitosano/química , Quitosano/farmacología , Durapatita/química , Durapatita/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Regeneración Ósea/efectos de los fármacos , Nanofibras/química , Poliésteres/química , Poliésteres/farmacología , Animales , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Ratones , Andamios del Tejido/química , Geles/química , Staphylococcus aureus/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/citologíaRESUMEN
This study addressed enamel demineralization, a common complication in fixed orthodontic treatment, by evaluating a novel orthodontic adhesive with DMAHDM-PCL composite fibers. These fibers, produced through electrospinning, were incorporated into orthodontic adhesive to create experimental formulations at different concentrations and a control group. The study assessed antimicrobial properties, biosafety, and mechanical characteristics. New orthodontic adhesive exhibited significant bacteriostatic effects, reducing bacterial biofilm activity and concentrations. Incorporating 1% and 3% DMAHDM-PCL did not affect cytocompatibility. Animal tests confirmed no inflammatory irritation. Shear bond strength and adhesive residual index results indicated that antimicrobial fibers didn't impact bonding ability. In conclusion, orthodontic adhesives with 3% DMAHDM-PCL fibers are potential antimicrobial bonding materials, offering a comprehensive solution to enamel demineralization in orthodontic patients.
Asunto(s)
Cementos Dentales , Poliésteres , Poliésteres/química , Cementos Dentales/química , Cementos Dentales/farmacología , Animales , Biopelículas/efectos de los fármacos , Metacrilatos/química , Metacrilatos/farmacología , Humanos , Ensayo de MaterialesRESUMEN
BACKGROUND: Alzheimer's disease (AD) is an irreversible primary brain disease with insidious onset. The rise of imaging genetics research has led numerous researchers to examine the complex association between genes and brain phenotypes from the perspective of computational biology. METHODS: Given that most previous studies have assumed that imaging data and genetic data are linearly related and are therefore unable to explore their nonlinear relationship, our study applied a joint depth semi-supervised nonnegative matrix decomposition (JDSNMF) algorithm to solve this problem. The JDSNMF algorithm jointly decomposed multimodal imaging genetics data into both a standard basis matrix and multiple feature matrices. During the decomposition process, the coefficient matrix A multilayer nonlinear transformation was performed using a neural network to capture nonlinear features. RESULTS: The results using a real dataset demonstrated that the algorithm can fully exploit the association between strongly correlated image genetics data and effectively detect biomarkers of AD. Our results might provide a reference for identifying biologically significant imaging genetic correlations, and help to elucidate disease-related mechanisms. CONCLUSIONS: The diagnostic model constructed by the top features of the three modality data sets mined by the algorithm has high accuracy, and these features are expected to become new therapeutic targets for AD.
Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Automático , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Neuroimagen/métodos , Marcadores Genéticos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Algoritmos , Anciano , Redes Neurales de la ComputaciónRESUMEN
Adopting effective and efficient techniques for the treatment of heavy metal pollution in water bodies plays an important role in guaranteeing the quality of water and the sustainable development of water resources. In this study, GO, MMT and SA were used as raw materials to compare the adsorption behaviors of three alginate-based adsorbents crosslinked with different valence metal ions (Ca2+, Fe3+ and Zr4+) on Cu(II). The aerogels were based on sodium alginate as the matrix material with unique slit-shaped pore structures formed by stacking effect of sheets and chemical bonding. It was found that the pore structures of the aerogels were denser and more orderly with the increase of the valence states of the crosslinked ions, and the affinity for Cu(II) in planar configuration was stronger. The Zr4+-GMSA aerogel had the maximum adsorption capacity of 126.68 mg/g and the Kd of Cu(II) was up to 50.80 L/g, which exhibited good preferential adsorption performance. The adsorption mechanism of Mn+-GMSA aerogels on Cu(II) was mainly ionic exchange, surface complexation and physical adsorption, which was explored by combining XPS and EDS characterizations of Mn+-GMSA before and after adsorption. This scheme can provide valuable and meaningful contribution to realize the selective recovery of Cu(II).
Asunto(s)
Alginatos , Cobre , Contaminantes Químicos del Agua , Purificación del Agua , Cobre/química , Adsorción , Alginatos/química , Porosidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Iones/química , Cinética , Geles/química , Concentración de Iones de HidrógenoRESUMEN
The aim of this paper is to investigate the derived structure and properties of Zeolitic Imidazolate Framework-8 (ZIF-8), and the effect of residual structural on the catalytic properties after loading with Titanium Dioxide (TiO2). For this purpose, we ingeniously prepare C-ZIF-8@TiO2 with a transition-state defect structure and apply it for efficiently degrading organic dye wastewater represented by Rhodamine B (Rh-B). Thanks to the transition-state defect structure loaded with TiO2 and ZIF-8 self-derived Carbon (C) and Zinc Oxide (ZnO), the catalytic performance of C-ZIF-8@TiO2 is superior to that of TiO2 and normal TiO2/ZIF-8 composites, and it is effective in degrading a variety of antibiotics and dyes. The related characterization also shows good photovoltaic properties and long-term durability for C-ZIF-8@TiO2. The mechanism on free radical action is elucidated and the possible degradation pathway for Rh-B is speculated. Therefore, C-ZIF-8@TiO2 provides a new strategy for the degradation of organic pollutants in water bodies.
Asunto(s)
Contaminantes Ambientales , Fotólisis , Porosidad , Aguas Residuales , CatálisisRESUMEN
Artificial spinal dura mater was designed by combining solution blow-spun gelatin microfibers and dopamine-capped polyurethane bioadhesive. Notably, the gelatin microfibers had a special pore structure, good water adsorption capability, and excellent burst pressure resistance. The bioadhesive layer contributed to the excellent sealing performance in the wet state. This material provides a promising alternative as an artificial spinal dura mater to prevent cerebrospinal fluid leakage.
Asunto(s)
Pérdida de Líquido Cefalorraquídeo , Gelatina , Humanos , Pérdida de Líquido Cefalorraquídeo/prevención & control , Duramadre , AguaRESUMEN
In order to reduce the mineralization of soil organic carbon (SOC) and enhance the ability of soil carbon sequestration. Mn-modified waste dander biochar (Mn-BC) was successfully prepared via impregnation and pyrolysis, and MnSO4 was formed on its surface. Mn-BC increases the carbon retention and reduces the emissions of CO2 and SO2 in way of forming CO, Mn-O-C bond and MnSO4. At the same time, the stability of the original biochar was reserved due to forming a conjugated structure (CC and pyridine-N bond), and the carbon sequestration content was increased to 25.63%. Importantly, the application of Mn-BC can directly regulate the transformation of microbial bacterial community and lead to create stable carbon dominant bacteria (Firmicutes). And the mineralization rate of SOC is reduced to 0.48 mg CO2/(g·d), together with an increased content of TOC (48.16%), thus the purpose of efficient carbon sequestration is achieved in soil.
Asunto(s)
Carbono , Suelo , Suelo/química , Secuestro de Carbono , Dióxido de Carbono , Alérgenos Animales , Carbón Orgánico/química , BacteriasRESUMEN
Heavy metal stabilization is an effective method to treat chromium in tannery sludge. Here we show that mainly investigated NaH2PO4 (MSP) and organic matter (OM) to stabilize chromium in tannery sludge. The experimental investigation revealed that the addition of montmorillonite (MMT) and MSP samples showed a significant increase in the percentage of reducible and oxidizable Cr in the former compared to the samples with the addition of MMT. This is attributed to the formation of Cr-O bond, which allows the MSP to undergo an inner-sphere complexation reaction with the metal oxide of Cr via ligand exchange. Significantly, the MSP moiety adsorbs on the surface of OM through monodentate, which increases the adsorption sites of OM for Cr6+ and promotes the reduction of Cr6+ to Cr3+. Moreover, PO43- reacts with Cr3+ to produce CrPO4 precipitation, thus reducing the free Cr3+ content. Finally, DFT calculations confirmed that a ternary system is formed between PO43-, OM, and Cr, and the binding energy is negative, which indicated that PO43- could co-stabilize Cr with OM.