Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Open Forum Infect Dis ; 11(1): ofad614, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192381

RESUMEN

Background: The Taiwanese government made a concerted effort to contain a coronavirus disease 2019 (COVID-19) nosocomial outbreak of variant B.1.429, shortly before universal vaccination program implementation. This study aimed to investigate seroprevalence in the highest-risk regions. Methods: Between January and February 2021, we retrieved 10 000 repository serum samples from blood donors to examine for antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) and spike (S) antigens. A positive result was confirmed if anti-N and anti-S antibodies were positive. Overall, 2000 donors residing in the highest-risk district and donating blood in January 2021 were further examined for SARS-CoV-2 RNA. We estimated seroprevalence and compared the epidemic curve between confirmed COVID-19 cases and blood donors with positive antibodies or viral RNA. Results: Twenty-one cases with COVID-19 were confirmed in the nosocomial cluster, with an incidence of 1.27/100 000 in the COVID-affected districts. Among 4888 close contacts of the nosocomial cases, 20 (0.4%) became confirmed cases during isolation. Anti-SARS-CoV-2 was detected in 2 of the 10000 blood donors, showing a seroprevalence of 2/10000 (95% CI, 0.55-7.29). None of the 2000 donors who underwent tests for SARS-CoV-2 RNA were positive. The SARS-CoV-2 infection epidemic curve was observed sporadically in blood donors compared with the nosocomial cluster. Conclusions: In early 2021, an extremely low anti-SARS-CoV-2 seroprevalence among blood donors was observed. Epidemic control measures through precise close contact tracing, testing, and isolation effectively contained SARS-CoV-2 transmission before universal vaccination program implementation.

2.
Nucleus ; 14(1): 2293599, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38105528

RESUMEN

Noncoding RNAs have been found to play important roles in DNA damage repair, whereas the participation of circRNA remains undisclosed. Here, we characterized ciRS-7, a circRNA containing over 70 putative miR-7-binding sites, as an enhancer of miRISC condensation and DNA repair. Both in vivo and in vitro experiments confirmed the condensation of TNRC6B and AGO2, two core protein components of human miRISC. Moreover, overexpressing ciRS-7 largely increased the condensate number of TNRC6B and AGO2 in cells, while silencing ciRS-7 reduced it. Additionally, miR-7 overexpression also promoted miRISC condensation. Consistent with the previous report that AGO2 participated in RAD51-mediated DNA damage repair, the overexpression of ciRS-7 significantly promoted irradiation-induced DNA damage repair by enhancing RAD51 recruitment. Our results uncover a new role of circRNA in liquid-liquid phase separation and provide new insight into the regulatory mechanism of ciRS-7 on miRISC function and DNA repair.


Asunto(s)
MicroARNs , ARN Circular , Humanos , ARN Circular/genética , Separación de Fases , MicroARNs/genética , MicroARNs/metabolismo , Reparación del ADN/genética , Daño del ADN , Proteínas de Unión al ARN/metabolismo
3.
Cell Death Dis ; 14(11): 746, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968256

RESUMEN

DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Reparación del ADN/genética , Reparación del ADN por Unión de Extremidades , Daño del ADN , ADN
4.
Chem Biodivers ; 20(10): e202300620, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690995

RESUMEN

Five psoralen derivatives were synthesized and the structures of them were characterized by 1 H-NMR, 13 C-NMR, and IR. The antioxidant properties of the compounds were tested by inhibiting the free radical-initiated DNA oxidation and scavenging the radical reaction. The results showed that the effective stoichiometric factors (n) of the compounds V and IV could reach 2.00 and 2.11 in the system of inhibiting the DNA oxidation reaction initiated by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). In the inhibition of ⋅OH-oxidation of the DNA system, compounds I~V showed antioxidant properties. The thiobarbituric acid absorbance (TBARS) percentages of compounds IV and V were 76.19 % and 78.84 %. Compounds I~V could also inhibit Cu2+ /GSH-oxidation of DNA, and all compounds exhibited good antioxidant properties except compound II (94.00 %). All the five compounds were able to trap diammonium 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) salt radical (ABTS+ ⋅), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH⋅) and 2,6-di-tert-butyl-alpha-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-p-tolylox radical (galvinoxyl⋅). The ability of compounds I~V to scavenge those free radicals can be measured by the k values. The k values ranged from 0.07 to 0.82 in scavenging ABTS+ ⋅, galvinoxyl, and DPPH radicals, respectively.

5.
Nucleic Acids Res ; 51(18): 9733-9747, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638744

RESUMEN

RAP80 has been characterized as a component of the BRCA1-A complex and is responsible for the recruitment of BRCA1 to DNA double-strand breaks (DSBs). However, we and others found that the recruitment of RAP80 and BRCA1 were not absolutely temporally synchronized, indicating that other mechanisms, apart from physical interaction, might be implicated. Recently, liquid-liquid phase separation (LLPS) has been characterized as a novel mechanism for the organization of key signaling molecules to drive their particular cellular functions. Here, we characterized that RAP80 LLPS at DSB was required for RAP80-mediated BRCA1 recruitment. Both cellular and in vitro experiments showed that RAP80 phase separated at DSB, which was ascribed to a highly disordered region (IDR) at its N-terminal. Meanwhile, the Lys63-linked poly-ubiquitin chains that quickly formed after DSBs occur, strongly enhanced RAP80 phase separation and were responsible for the induction of RAP80 condensation at the DSB site. Most importantly, abolishing the condensation of RAP80 significantly suppressed the formation of BRCA1 foci, encovering a pivotal role of RAP80 condensates in BRCA1 recruitment and radiosensitivity. Together, our study disclosed a new mechanism underlying RAP80-mediated BRCA1 recruitment, which provided new insight into the role of phase separation in DSB repair.

6.
BMC Cancer ; 23(1): 467, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217903

RESUMEN

BACKGROUND: Neoadjuvant chemoradiotherapy (NCRT) and total mesorectal excision are standard treatment regimen for patients with locally advanced rectal cancer (LARC). This sphincter-saving treatment strategy may be accompanied by a series of anorectal functional disorders. Yet, prospective studies that dynamically evaluating the respective roles of radiotherapy, chemotherapy and surgery on anorectal function are lacking. PATIENTS/DESIGN: The study is a prospective, observational, controlled, multicentre study. After screening for eligibility and obtaining informed consent, a total of 402 LARC patients undergoing NCRT followed by surgery, or neoadjuvant chemotherapy followed by surgery, or surgery only would be included in the trial. The primary outcome measure is the average resting pressure of anal sphincter. The secondary outcome measures are maximum anal sphincter contraction pressure, Wexner continence score and low anterior resection syndrome (LARS) score. Evaluations will be carried out at the following stages: baseline (T1), after radiotherapy or chemotherapy (before surgery, T2), after surgery (before closing the temporary stoma, T3), and at follow-up visits (every 3 to 6 months, T4, T5……). Follow-up for each patient will be at least 2 years. DISCUSSION: We expect the program to provide more information of neoadjuvant radiotherapy and/or chemotherapy on anorectal function, and to optimize the treatment strategy to reduce anorectal dysfunction for LARC patients. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05671809). Registered on 26 December 2022.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Humanos , Terapia Neoadyuvante/métodos , Neoplasias del Recto/patología , Estudios Prospectivos , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento , Quimioradioterapia/métodos , Estadificación de Neoplasias , Estudios Observacionales como Asunto , Estudios Multicéntricos como Asunto
7.
Sci Rep ; 13(1): 4832, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964267

RESUMEN

Cataract, the leading cause of blindness worldwide, is caused by crystallin protein aggregation within the protected lens environment. Phase separation has been implicated as an important mechanism of protein aggregation diseases, such as neurodegeneration. Similarly, cataract has been proposed to be a protein condensation disease in the last century. However, whether crystallin proteins aggregate via a phase separation mechanism and which crystallin protein initiates the aggregation remain unclear. Here, we showed that all types of crystallin-GFP proteins remain soluble under physiological conditions, including protein concentrations, ion strength, and crowding environments. However, in age or disease-induced aberrant conditions, α-crystallin-GFP, including αA- and αB-crystallin-GFP, but not other crystallin-GFP proteins, undergo phase separation in vivo and in vitro. We found that aging-related changes, including higher crystallin concentrations, increased Na+, and decreased K+ concentrations, induced the aggregation of α-crystallin-GFP. Furthermore, H2O2, glucose, and sorbitol, the well-known risk factors for cataract, significantly enhanced the aggregation of αB-crystallin-GFP. Taken together, our results revealed that α-crystallin-GFP forms aggregates via a phase transition process, which may play roles in cataract disease. Opposite to the previously reported function of enhancing the solubility of other crystallin, α-crystallin may be the major aggregated crystallin in the lens of cataract patients.


Asunto(s)
Catarata , Cristalinas , Cristalino , Cadena A de alfa-Cristalina , alfa-Cristalinas , Humanos , alfa-Cristalinas/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Agregado de Proteínas , Peróxido de Hidrógeno/metabolismo , Catarata/metabolismo , Cristalino/metabolismo
8.
Cell Death Discov ; 8(1): 436, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316314

RESUMEN

Aberrant DNA damage response (DDR) axis remains the major molecular mechanism for tumor radio-resistance. We recently characterized liquid-liquid phase separation (LLPS) as an essential mechanism of DDR, and identified several key DDR factors as potential LLPS proteins, including nucleolar protein NOP53. In this study, we found that NOP53 formed highly concentrated droplets in vivo and in vitro, which had liquid-like properties including the fusion of adjacent condensates, rapid fluorescence recovery after photobleaching and the sensitivity to 1,6-hexanediol. Moreover, the intrinsically disordered region 1 (IDR1) is required for NOP53 phase separation. In addition, multivalent-arginine-rich linear motifs (M-R motifs), which are enriched in NOP53, were essential for its nucleolar localization, but were dispensable for the LLPS of NOP53. Functionally, NOP53 silencing diminished tumor cell growth, and significantly sensitized colorectal cancer (CRC) cells to radiotherapy. Mechanically, NOP53 negatively regulated p53 pathway in CRC cells treated with or without radiation. Importantly, data from clinical samples confirmed a correlation between NOP53 expression and tumor radio-resistance. Together, these results indicate an important role of NOP53 in radio-resistance, and provide a potential target for tumor radio-sensitization.

9.
BMC Cancer ; 22(1): 1140, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335306

RESUMEN

BACKGROUND: Our previous study reported that recombinant human epidermal growth factor (rhEGF)-triggered EGFR internalization promoted radioresistance. Here, we aimed to evaluate the effect of rhEGF on the skin protection of rectal and anal cancer patients receiving radiotherapy. METHODS: One hundred and ninety-three rectal and anal cancer patients who received radiotherapy were prospectively enrolled from January 2019 to December 2020. To perform self-controlled study, the left and right pelvic skin area (separated by midline) were randomly assigned to the rhEGF and control side. The association between radiation dermatitis and factors including rhEGF, the dose of radiotherapy and tumor distance from anal edge were analyzed. RESULTS: Among 193 enrolled patients, 41 patients (21.2%) did not develop radiation dermatitis, and 152 patients (78.8%) suffered radiation dermatitis on at least one side of pelvic skin at the end of radiotherapy. For the effect on radiation dermatitis grade, rhEGF had improved effect on 6 (4.0%) patients, detrimental effect on 2 (1.3%) patients, and no effect on 144 (94.7%) patients. Whereas for the effect on radiation dermatitis area, rhEGF showed improved effect on the radiation dermatitis area of 46 (30.2%) patients, detrimental effect on 15 (9.9%) patients, and no effect on 91 (59.9%) patients. The radiation dermatitis area of rhEGF side was significantly smaller than that of control side (P = 0.0007). CONCLUSIONS: rhEGF is a skin protective reagent for rectal and anal cancer patients receiving radiotherapy. TRIAL REGISTRATION: Chinese Clinical Trial Registry identifier: ChiCTR1900020842; Date of registration: 20/01/2019.


Asunto(s)
Neoplasias del Ano , Radiodermatitis , Humanos , Neoplasias del Ano/tratamiento farmacológico , Neoplasias del Ano/radioterapia , Factor de Crecimiento Epidérmico/uso terapéutico , Radiodermatitis/tratamiento farmacológico , Radiodermatitis/etiología , Proyectos de Investigación
10.
J Contemp Brachytherapy ; 14(4): 332-340, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36199952

RESUMEN

Purpose: To evaluate the efficacy of radiotherapy in locally advanced cervical cancer, and to determine the factors affecting prognosis. Material and methods: Clinical data of 211 patients with cervical cancer, treated at our institution between June 2014 and February 2017 were reviewed retrospectively. All patients were treated with definitive radiotherapy and received external irradiation of 45-50.4 Gy. High-dose-rate brachytherapy (HDR-BT) of 24-36 Gy was prescribed to a high-risk clinical target volume (HR-CTV) as a local boost. All statistical analyses were performed with SPSS version 19.0 using Kaplan-Meier survival test and Cox regression analysis. Additionally, dose parameters of patients with IIIB stage treated with combined intracavitary/interstitial (IC/IS) implants were compared with IC only. Results: With a median follow-up time of 69 months, local control (LC), overall survival (OS), disease-free survival (DFS), and nodal control (NC) at 5 years were 89%, 78%, 67%, and 88%, respectively. In multivariate analysis, the major determinant of LC was the level of pre-treatment squamous cell carcinoma antigen (SCC-Ag). The predictors of shorter OS were adenocarcinoma, pre-treatment SCC-Ag, and FIGO stage. Worse DFS was associated with adenocarcinoma, pre-treatment SCC-Ag, and involved lymph nodes. The predictors for nodal failure were positive pelvic lymph nodes. Patients with IIIB treated with IC/IS brachytherapy tended to improve DFS compared with IC alone, and obtained similar HR-CTV D90 EQD2 (n = 10) and biological effective dose (BED), 91 ±6 Gy vs. 89 ±3 Gy, and 107 ±4.5 Gy vs. 107 ±5.6 Gy, whereas decreased organs at risk (OARs) doses, including rectum and bladder D2cm3 were 7.5 Gy and 7.2 Gy lower, respectively. Late grade 3-4 bladder and bowel toxicities were observed in 1.9% of patients. Conclusions: Radiation therapy carried out in our institution results in good survival, with acceptable toxicity in locally advanced cervical cancer. Different individualized therapeutic strategies should be considered for patients with high-risk factors.

11.
Cell Death Dis ; 13(8): 709, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974014

RESUMEN

Paraspeckles are mammal-specific membraneless nuclear bodies that participate in various biological processes. NONO, a central paraspeckle component, has been shown to play pivotal roles in DNA double-strand breaks (DSB) repair, whereas its underlying mechanism needs to be further disclosed. Here, using co-immunoprecipitation and mass spectrum, we identified ribosomal protein P0 (RPLP0) as a DSB-induced NONO-binding protein; RPLP0 binds to the RRM1 and RRM2 domains of NONO. Similar to NONO, RPLP0 enhances non-homologous end joining-mediated DSB repair, which was ascribed to a ribosome-independent manner. Interestingly, paraspeckles were induced as early as 15 min after irradiation; it further recruited nuclear RPLP0 to enhance its interaction with NONO. Radiation-induced NONO/RPLP0 complex subsequently anchored at the damaged DNA and increased the autophosphorylation of DNA-PK at Thr2609, thereby enhancing DSB repair. Consistently, in vivo and in vitro experiments showed that depletion of NONO sensitizes tumor cells to radiation. For patients with locally advanced rectal cancer, NONO expression was remarkably increased in tumor tissues and correlated with a poor response to radiochemotherapy. Our findings suggest a pivotal role of radiation-induced paraspeckles in DNA repair and tumor radioresistance, and provide a new insight into the ribosome-independent function of ribosomal proteins.


Asunto(s)
Reparación del ADN , Neoplasias , Paraspeckles , Tolerancia a Radiación , Proteínas Ribosómicas , Daño del ADN , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Humanos , Neoplasias/genética , Neoplasias/radioterapia , Paraspeckles/genética , Proteínas de Unión al ARN/genética , Tolerancia a Radiación/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
12.
Anal Cell Pathol (Amst) ; 2022: 9675466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498155

RESUMEN

Cervical cancer (CC) is among the most prevalent cancers among female populations with high recurrence rates all over the world. Cisplatin (DDP) is the first-line treatment for multiple cancers, including CC. The main problem associated with its clinical application is drug resistance. This study is aimed at investigating the function and downstream regulation mechanism of forkhead-box A1 (FOXA1) in CC, which was verified as an oncogene in several cancers. Using GEO database and bioinformatics analysis, we identified FOXA1 as a possible oncogene in CC. Silencing of FOXA1 inhibited CC cell growth, invasion, and chemoresistance. Afterwards, the downstream gene of FOXA1 was predicted using a bioinformatics website and validated using ChIP and dual-luciferase assays. SIX4, a possible target of FOXA1, promoted CC cell malignant aggressiveness and chemoresistance. In addition, overexpression of SIX4 promoted phosphorylation of PI3K and AKT proteins and activated the PI3K/AKT signaling pathway. Further overexpression of SIX4 reversed the repressive effects of FOXA1 knockdown on CC cell growth, invasion, and chemoresistance in DDP-resistant cells. FOXA1-induced SIX4 facilitates CC progression and chemoresistance, highlighting a strong potential for FOXA1 to serve as a promising therapeutic target in CC.


Asunto(s)
Neoplasias del Cuello Uterino , Transformación Celular Neoplásica , Resistencia a Antineoplásicos/genética , Femenino , Factor Nuclear 3-alfa del Hepatocito/genética , Proteínas de Homeodominio , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transactivadores , Neoplasias del Cuello Uterino/genética
13.
Nat Commun ; 13(1): 2638, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551189

RESUMEN

The rapid recognition of DNA double-strand breaks (DSBs) by the MRE11/RAD50/NBS1 (MRN) complex is critical for the initiation of DNA damage response and DSB end resection. Here, we show that MRN complex interacting protein (MRNIP) forms liquid-like condensates to promote homologous recombination-mediated DSB repair. The intrinsically disordered region is essential for MRNIP condensate formation. Mechanically, the MRN complex is compartmentalized and concentrated into MRNIP condensates in the nucleus. After DSB formation, MRNIP condensates move to the damaged DNA rapidly to accelerate the binding of DSB by the concentrated MRN complex, therefore inducing the autophosphorylation of ATM and subsequent activation of DNA damage response signaling. Meanwhile, MRNIP condensates-enhanced MRN complex loading further promotes DSB end resection. In addition, data from xenograft models and clinical samples confirm a correlation between MRNIP and radioresistance. Together, these results reveal an important role of MRNIP phase separation in DSB response and the MRN complex-mediated DSB end resection.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/metabolismo , Reparación del ADN por Recombinación
15.
Clin Rheumatol ; 41(2): 437-452, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34553293

RESUMEN

BACKGROUND: Lupus erythematosus is an autoimmune disease that causes damage to multiple organs ranging from skin lesions to systemic manifestations. Cutaneous lupus erythematosus (CLE) is a common type of lupus erythematosus (LE), but its molecular mechanisms are currently unknown. The study aimed to explore changes in the gene expression profiles and identify key genes involved in CLE, hoping to uncover its molecular mechanism and identify new targets for CLE. METHOD: We analyzed the microarray dataset (GSE109248) derived from the Gene Expression Omnibus (GEO) database, which was a transcriptome profiling of CLE cutaneous lesions. The differentially expressed genes (DEGs) were identified, and the functional annotation of DEGs was performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein-protein interaction (PPI) network was also constructed to identify hub genes involved in CLE. RESULT: A total of 755 up-regulated DEGs and 405 down-regulated DEGs were identified. GO enrichment analysis showed that defense response to virus, immune response, and type I interferon signaling pathway were the most significant enrichment items in DEGs. The KEGG pathway analysis identified 51 significant enrichment pathways, which mainly included systemic lupus erythematosus, osteoclast differentiation, cytokine-cytokine receptor interaction, and primary immunodeficiency. Based on the PPI network, the study identified the top 10 hub genes involved in CLE, which were CXCL10, CCR7, FPR3, PPARGC1A, MMP9, IRF7, IL2RG, SOCS1, ISG15, and GSTM3. By comparison between subtypes, the results showed that ACLE had the least DEGs, while CCLE showed the most gene and functional changes. CONCLUSION: The identified hub genes and functional pathways found in this study may expand our understanding on the underlying pathogenesis of CLE and provide new insights into potential biomarkers or targets for the diagnosis and treatment of CLE. Key Points • The bioinformatics analysis based on CLE patients and healthy controls was performed and 1160 DEGs were identified • The 1160 DEGs were mainly enriched in biological processes related to immune responses, including innate immune response, type I interferon signaling pathway, interferon-γ-mediated signaling pathway, positive regulation of T cell proliferation, regulation of immune response, antigen processing, and presentation via MHC class Ib and so on • KEGG pathway enrichment analysis indicated that DEGs were mainly enriched in several immune-related diseases and virus infection, including systemic lupus erythematosus, primary immunodeficiency, herpes simplex infection, measles, influenza A, and so on • The hub genes such as CXCL10, IRF7, MMP9, CCR7, and SOCS1 may become new markers or targets for the diagnosis and treatment of CLE.


Asunto(s)
Biología Computacional , Lupus Eritematoso Cutáneo , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Mapas de Interacción de Proteínas , Transcriptoma
16.
Cell Death Dis ; 12(11): 970, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671012

RESUMEN

Oncogenic c-Myc is a master regulator of G1/S transition. Long non-coding RNAs (lncRNAs) emerge as new regulators of various cell activities. Here, we found that lncRNA SnoRNA Host Gene 17 (SNHG17) was elevated at the early G1-phase of cell cycle. Both gain- and loss-of function studies disclosed that SNHG17 increased c-Myc protein level, accelerated G1/S transition and cell proliferation, and consequently promoted tumor cell growth in vitro and in vivo. Mechanistically, the 1-150-nt of SNHG17 physically interacted with the 1035-1369-aa of leucine rich pentatricopeptide repeat containing (LRPPRC) protein, and disrupting this interaction abrogated the promoting role of SNHG17 in c-Myc expression, G1/S transition, and cell proliferation. The effect of SNHG17 in stimulating cell proliferation was attenuated by silencing c-Myc or LRPPRC. Furthermore, silencing SNHG17 or LRPPRC increased the level of ubiquitylated c-Myc and reduced the stability of c-Myc protein. Analysis of human hepatocellular carcinoma (HCC) tissues revealed that SNHG17, LRPPRC, and c-Myc were significantly upregulated in HCC, and they showed a positive correlation with each other. High level of SNHG17 or LRPPRC was associated with worse survival of HCC patients. These data suggest that SNHG17 may inhibit c-Myc ubiquitination and thus enhance c-Myc level and facilitate proliferation by interacting with LRPPRC. Our findings identify a novel SNHG17-LRPPRC-c-Myc regulatory axis and elucidate its roles in G1/S transition and tumor growth, which may provide potential targets for cancer therapy.


Asunto(s)
Proliferación Celular/genética , Fase G1/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/metabolismo , Fase S/genética , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Células HEK293 , Humanos , Masculino , Ratones , Modelos Biológicos , Proteínas de Neoplasias/genética , Fosforilación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba/genética
17.
Med Sci Monit ; 27: e931427, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34366426

RESUMEN

BACKGROUND Acute chemical liver injury needs to be further explored. The present study aimed to compare the effects of intraperitoneal injection with carbon tetrachloride on acute liver toxicity after 24 h in male and female Kunming mice. MATERIAL AND METHODS In this study, female and male mice were simultaneously divided into 3 different groups. Each group was treated differently, and after 24 h, blood samples were collected to check for changes in the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were used to assess liver toxicity. Liver samples were used for hematoxylin-eosin staining, and periodic acid Schiff reagent staining was performed to detect the pathological changes of each group. The expression level of biomarker molecules in liver cells was also systematically analyzed. RESULTS Our results showed that, compared with male mice, female mice showed more serious damage: reduced glycogen and higher degree of necrosis, and the levels of heatshock protein 27 (HSP27), heat-shock protein 70 (HSP70), proliferating cell nuclear antigen (PCNA) and B cell lymphoma/lewkmia-2 (Bcl-2) were significantly lower than in the male group (P<0.05 or P<0.01), while the results of Bcl-2-associated X protein (Bax), cysteinyl aspartate specific proteinase 3 (Caspase3), and cytochrome P450 2E1 (CYP2E1) were the opposite (P<0.05 or P<0.01). CONCLUSIONS The findings from this study showed that, compared with male mice, at 24 h after CCl4 toxicity, female mice showed more severe changes of hepatocyte necrosis and PAS-positivity, with significantly reduced expression of HSP27, HSP70, PCNA, and Bcl-2, and significantly increased expression of Bax, caspase-3, and CYP2E1.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/diagnóstico , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Animales , Tetracloruro de Carbono/administración & dosificación , Intoxicación por Tetracloruro de Carbono/etiología , Intoxicación por Tetracloruro de Carbono/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Inyecciones Intraperitoneales , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Necrosis/inducido químicamente , Necrosis/diagnóstico , Índice de Severidad de la Enfermedad , Factores Sexuales , Pruebas de Toxicidad Aguda/métodos
18.
Am J Cancer Res ; 11(6): 2838-2852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249431

RESUMEN

Radioresistance is one of the main causes of cancer treatment failure, which leads to relapse and inferior survival outcome of cancer patients. Liquid-liquid phase separation (LLPS) of proteins is known to be involved in various biological processes, whereas its role in the regulation of radiosensitivity remains largely unknown. In this study, we characterized NONO, an RNA/DNA binding protein with LLPS capacity, as an essential regulator of tumor radioresistance. In vitro assay showed that NONO involved in DNA repair via non-homologous end joining (NHEJ) manner. NONO knockout significantly reduced DNA damage repair and sensitized tumor cells to irradiation in vitro and in vivo. NONO overexpression was correlated with an inferior survival outcome in cancer patients. Mechanically, NONO was associated with nuclear EGFR (nEGFR). Both irradiation and EGF treatment induced nEGFR accumulation, thereby increased the association between NONO and nEGFR. However, NONO was not a substrate of EGFR kinase. Furthermore, NONO promoted DNA damage-induced DNA-PK phosphorylation at T2609 by enhancing the interaction between EGFR and DNA-PK. Importantly, NONO protein formed high concentration LLPS droplets in vitro, and recruited EGFR and DNA-PK. Disruption of NONO droplets with LLPS inhibitor significantly reduced the interaction between EGFR and DNA-PK, and suppressed DNA damage-induced phosphorylation of T2609-DNA-PK. Taken together, LLPS of NONO recruits nuclear EGFR and DNA-PK and enhances their interaction, further increases DNA damage-activated pT2609-DNA-PK and promotes NHEJ-mediated DNA repair, finally leads to tumor radioresistance. NONO phase separation-mediated radioresistance may serve as a novel molecular target to sensitize tumor cell to radiotherapy.

19.
Am J Cancer Res ; 11(5): 2291-2302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34094685

RESUMEN

Siglec15 is a recently characterized immunosuppressive transmembrane protein, which expresses in various types of solid tumors and promotes cancer development. Several studies reported that Siglec15 is a prognostic biomarker of cancer patients, and targeting Siglec15 may be a promising strategy for cancer therapy. However, the regulation of Siglec15 function remains unclear. Here we show that the immunosuppression activity of Siglec15 is largely modulated by N-glycosylation. Through mass spectrum and site mutation analysis, we identified that Siglec15 was extensively glycosylated at N172 (N173 for mouse) in cancer cells. Meanwhile, Siglec15 N172Q had a similar molecular weight with PNGase-F-treated Siglec15, suggesting N172 as the only one glycosylation residue. In xenograft model, glycosylation deficiency of Siglec15 reduced tumor growth in C57BL/6 mice, but had no impact in nude mice, indicating the requirement of N-glycosylation for immunosuppressive function of Siglec15. Furthermore, colorectal cancer patients with high Siglec15 expression had a poor response to neoadjuvant chemo-radiotherapy and short survival time. Interestingly, removal of N-glycosylation enhances the detection of Siglec15, which may be employed in the prediction of immunotherapy response. Together, our results disclose a pivotal role of glycosylated Siglec15 in tumor immune escape, which may be a therapeutic target for cancer immunotherapy.

20.
J Biomed Nanotechnol ; 17(6): 1007-1019, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34167616

RESUMEN

In recent years, the emergence of non-toxic but catalytically active inorganic nanoparticles has attracted great attention for cancer treatment, but the therapeutic effect has been affected by the limited reactive oxygen species in tumors. Therefore, the combination of chemotherapy and chemodynamic therapy is regarded as a promising therapeutic strategy. In this paper, we reported the preparation and bioactivity evaluation of poly(lactic acid-co-glycolic acid) (PLGA) grafted-γ-Fe2O3 nanoparticles with dual response of endogenous peroxidase and catalase like activities. Our hypothesis is that PLGAgrafted γ-Fe2O3 nanoparticles could be used as a drug delivery system for the anti-tumor drug doxorubicin to inhibit the growth of lung adenocarcinoma A549 cells; meanwhile, based on its mimic enzyme properties, this kind of nanoparticles could be combined with doxorubicin in the treatment of A549 cells. Our experimental results showed that the PLGAgrafted γ-Fe2O3 nanoparticles could simulate the activity of catalase and decompose hydrogen peroxide into H2O and oxygen in neutral tumor microenvironment, thus reducing the oxidative damage caused by hydrogenperoxide to lung adenocarcinoma A549 cells. In acidic microenvironment, PLGA grafted γ-Fe2O3 nanoparticles could simulate the activity of peroxidase and effectively catalyze the decomposition of hydrogen peroxide to generate highly toxic hydroxyl radicals, which could cause the death of A549 cells. Furthermore, the synergistic effect of peroxidase-like activity of PLGA-grafted γ-Fe2O3 nanoparticles and doxorubicin could accelerate the apoptosisand destruction of A549 cells, thus enhancing the antitumor effect of doxorubicin-loaded PLGA-grafted γ-Fe2O3 nanoparticles. Therefore, this study provides an effective nanoplatform based on dual inorganic biomimetic nanozymes for the treatment of lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Nanopartículas , Células A549 , Línea Celular Tumoral , Doxorrubicina/farmacología , Compuestos Férricos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA