Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Adv Mater ; : e2405224, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118578

RESUMEN

In this work, fusible microspheres loaded with radiopaque agents as an embolic agent for transcatheter arterial embolization (TAE) are developed. A poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) multi-block copolymer basing polyurethane (PCEU) is synthesized and fabricated into blank microspheres (BMs). The microspheres are elastic in compression test. A clinical contrast agent lipiodol is encapsulated in the microspheres to receive fusible radiopaque microspheres (FRMs). The sizes of FRMs are uniform and range from 142.2 to 343.1 µm. The encapsulated lipiodol acts as the plasticizer to reduce the melting temperature point (Tm) of PECU microspheres, thus, leading to the fusion of microspheres to exhibit efficient embolization in vivo. The performance of FRMs is carried out on a rabbit ear embolization model. Serious ischemic necrosis is observed and the radiopacity of FRMs sustains much longer time than that of commercial contrast agent Loversol in vivo. The fusible and radiopaque microsphere is promising to be developed as an exciting embolic agent.

2.
Angew Chem Int Ed Engl ; : e202412337, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106111

RESUMEN

A cascade Nazarov cyclization/dicycloexpansions reaction was developed for the precise synthesis of the angularly fused M/5/N (M = 5, 6; N = 4-9, 13) tricyclic skeletons. The prioritized expansion of the first ring played a critical role in the transformations, due to the release of ring strain, and the nature of the substituents present on the substrate is another influencing factor. This pioneering cascade reaction features broad substrates scope (33 examples), short reaction time, exceptional yields (up to 95%), and remarkable regioselectivities (> 20:1). Exploiting the synthetic application of this cascade reaction, we successfully executed a succinct total synthesis of nominal madreporanone for the first time.

4.
Accid Anal Prev ; 207: 107741, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137658

RESUMEN

Statistical analysis of traffic crash frequency is significant for figuring out the distribution pattern of crashes, predicting the development trend of crashes, formulating traffic crash prevention measures, and improving traffic safety planning systems. In recent years, the theory and practice for traffic safety management have shown that road crash data have characteristics such as spatial correlation, temporal correlation, and excess zeros. If these characteristics are ignored in the modeling process, it may seriously affect the fitting performance and prediction accuracy of traffic crash frequency models and even lead to incorrect conclusions. In this research, traffic crash data from rural two-way two-lane from four counties in Pennsylvania, USA was modeled considering the spatiotemporal effects of crashes. First, a negative binomial Lindley spatiotemporal effect model of crash frequency was constructed at the micro level; Simultaneously, the characteristics and problems of excess zeros and potential heterogeneity of the crash data were resolved; Finally, the effects of road characteristics on crash frequency were analyzed. The results indicate a significant spatial correlation between the crash frequency of adjacent road sections. Compared with the negative binomial model, the negative binomial Lindley model can better handle the excess zeros characteristics in traffic crash data. The model that considers both spatial correlation and temporal conditional autoregressive effects has the best fit for the observed data. In addition, for road sections that allow passing and have a speed limitation of not less than 50 miles per hour, the crash frequency corresponding to these sections is lower due to their good visibility and road conditions. The increase in average turning angle and intersection density on the horizontal curve of the road section corresponds to an increase in crash frequency.

5.
Materials (Basel) ; 17(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124349

RESUMEN

As the integration of chips in 3D integrated circuits (ICs) increases and the size of micro-bumps reduces, issues with the reliability of service due to electromigration and thermomigration are becoming more prevalent. In the practical application of solder joints, an increase in the grain size of intermetallic compounds (IMCs) has been observed during the reflow process. This phenomenon results in an increased thickness of the IMC layer, accompanied by a proportional increase in the volume of the IMC layer within the joint. The brittle nature of IMC renders it susceptible to excessive growth in small-sized joints, which has the potential to negatively impact the reliability of the welded joint. It is therefore of the utmost importance to regulate the formation and growth of IMCs. The following paper presents the electrodeposition of a Ni-W layer on a Cu substrate, forming a barrier layer. Subsequently, the barrier properties between the Sn/Cu reactive couples were subjected to a comprehensive and systematic investigation. The study indicates that the Ni-W layer has the capacity to impede the diffusion of Sn atoms into Cu. Furthermore, the Ni-W layer is a viable diffusion barrier at the Sn/Cu interface. The "bright layer" Ni2WSn4 can be observed in all Ni-W coatings during the soldering reflow process, and its growth was almost linear. The structure of the Ni-W layer is such that it reduces the barrier properties that would otherwise be inherent to it. This is due to the "bright layer" Ni2WSn4 that covers the original Ni-W barrier layer. At a temperature of 300 °C for a duration of 600 s, the Ni-W barrier layer loses its blocking function. Once the "bright layer" Ni2WSn4 has completely covered the original Ni-W barrier layer, the diffusion activation energy for Sn diffusion into the Cu substrate side will be significantly reduced, particularly in areas where the distortion energy is concentrated due to electroplating tension. Both the "bright layer" Ni2WSn4 and Sn will grow rapidly, with the formation of Cu-Sn intermetallic compounds (IMCs). At temperatures of 250 °C, the growth of Ni3Sn4-based IMCs is controlled by grain boundaries. Conversely, the growth of the Ni2WSn4 layer (consumption of Ni-W layer) is influenced by a combination of grain boundary diffusion and bulk diffusion. At temperatures of 275 °C and 300 °C, the growth of Ni3Sn4-based IMCs and the Ni2WSn4 layer (consumption of Ni-W layer) are both controlled by grain boundaries. The findings of this study can inform the theoretical design of solder joints with barrier layers as well as the selection of Ni-W diffusion barrier layers for use in different soldering processes. This can, in turn, enhance the reliability of microelectronic devices, offering significant theoretical and practical value.

6.
Ther Adv Med Oncol ; 16: 17588359241266156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091604

RESUMEN

In recent years, with the continuous development of molecular immunology, immune checkpoint inhibitors (ICIs) have also been widely used in the treatment of gastric cancer, but they still face some challenges: The first is that only some people can benefit, the second is the treatment-related adverse events (TRAEs) that occur during treatment, and the third is the emergence of varying degrees of drug resistance with long-term use. How to overcome these challenges, combined therapy based on ICIs has become one of the important strategies. This article summarizes the clinical application of ICIs combined with chemotherapy, targeted therapy, radiotherapy, photodynamic therapy, thermotherapy, immune adjuvant, and dual immunotherapy and discusses the mechanism, and also summarizes the advantages and disadvantages of the current combination modalities and the potential research value. The aim of this study is to provide more and more optimized combination regimen for ICI combined therapy in patients with advanced gastric cancer and to provide reference for clinical and scientific research.

7.
Nat Commun ; 15(1): 6074, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025911

RESUMEN

One-dimensional metallic transition-metal chalcogenide nanowires (TMC-NWs) hold promise for interconnecting devices built on two-dimensional (2D) transition-metal dichalcogenides, but only isotropic growth has so far been demonstrated. Here we show the direct patterning of highly oriented Mo6Te6 NWs in 2D molybdenum ditelluride (MoTe2) using graphite as confined encapsulation layers under external stimuli. The atomic structural transition is studied through in-situ electrical biasing the fabricated heterostructure in a scanning transmission electron microscope. Atomic resolution high-angle annular dark-field STEM images reveal that the conversion of Mo6Te6 NWs from MoTe2 occurs only along specific directions. Combined with first-principles calculations, we attribute the oriented growth to the local Joule-heating induced by electrical bias near the interface of the graphite-MoTe2 heterostructure and the confinement effect generated by graphite. Using the same strategy, we fabricate oriented NWs confined in graphite as lateral contact electrodes in the 2H-MoTe2 FET, achieving a low Schottky barrier of 11.5 meV, and low contact resistance of 43.7 Ω µm at the metal-NW interface. Our work introduces possible approaches to fabricate oriented NWs for interconnections in flexible 2D nanoelectronics through direct metal phase patterning.

8.
Front Immunol ; 15: 1410284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072331

RESUMEN

Gastric cancer is highly prevalent in China, yet early diagnosis and overall survival rates are low. The primary treatment strategy is comprehensive therapy centered on surgery. Studies indicate that neoadjuvant chemotherapy can enhance radical resection rates and extend survival in locally advanced gastric cancer. Combining VEGFR inhibitors with chemotherapy improves efficacy in digestive system tumors, while PD-1/PD-L1 inhibitors combined with anti-angiogenesis agents or chemotherapy show synergistic effects. This report presents a case of gastric adenocarcinoma (cT3N1M0) treated with SOX, apatinib mesylate, and camrelizumab as neoadjuvant therapy, followed by D2 distal gastrectomy and postoperative adjuvant therapy with the same regimen. The patient completed all treatment cycles successfully. Post-neoadjuvant therapy, only focal residual cancer cells were found in the lamina propria (pT1a). During postoperative adjuvant therapy follow-up, gastroscopic biopsy indicated a pathological complete response with no recurrence or metastasis. The patient primarily experienced dyspepsia, oropharyngeal pain, capillary proliferation, mild bone marrow suppression, nausea, and vomiting as side effects. Therefore, SOX combined with apatinib mesylate and camrelizumab shows promise for treating resectable locally advanced gastric cancer.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Piridinas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Piridinas/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Gastrectomía , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Resultado del Tratamiento , Adenocarcinoma/tratamiento farmacológico
9.
J Immunother Cancer ; 12(7)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39060025

RESUMEN

BACKGROUND: The high metastasis rate is one of the main reasons for the poor prognosis of patients with hepatocellular carcinoma (HCC). Coagulation factor Xa (FXa) and its receptor proteinase-activated receptor-2 (PAR-2) proven to promote tumor metastasis in other forms of cancer. Here, we explore the role and mechanism of FXa in the regulation of resistance of anoikis and immune escape of HCC. METHODS: In vitro and in vivo experiments were conducted to explore the role of FXa in HCC metastasis and its potential mechanism. The effects of FXa inhibitor rivaroxaban on HCC immunotherapy were evaluated using intrahepatic metastasis animal models and clinical trial (No. ChiCTR20000040540). We investigated the potential of FXa inhibition as a treatment for HCC. RESULTS: FXa was highly expressed in HCC and promoted metastasis by activating PAR-2. Mechanistically, FXa-activated PAR-2 endows HCC cells with the ability of anoikis resistance to survive in the circulating blood by inhibiting the extrinsic apoptosis pathway. Furthermore, suspension stimulation-induced phosphorylation of STAT2, which promotes programmed death-ligand 1 (PD-L1) transcription and inhibits the antitumor effects of immune cells by inhibiting the infiltration of CD8+T cells in tumors and the levels of secreted cytokines. In vivo inhibition of FXa with rivaroxaban reduced HCC metastasis by decreasing PD-L1 expression and exhausting tumor-infiltrating lymphocytes. Notably, the combination of rivaroxaban and anti-programmed death-1 monoclonal antibody (anti-PD-1) programmed Death-1 monoclonal antibody (anti-PD-1) induced synergistic antitumor effects in animal models. Most importantly, rivaroxaban improved the objective response rate of patients with HCC to immune checkpoint inhibitors and prolonged overall survival time. CONCLUSIONS: FXa-activated PAR-2 promotes anoikis resistance and immune escape in HCC, suggesting the potential for combining coagulation inhibitors and PD-1/PD-L1 immune checkpoint blockade to enhance the therapeutic efficacy of HCC.


Asunto(s)
Anoicis , Antígeno B7-H1 , Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Receptor PAR-2 , Escape del Tumor , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Humanos , Receptor PAR-2/metabolismo , Animales , Ratones , Inmunoterapia/métodos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Factor Xa/metabolismo , Factor Xa/farmacología , Factor Xa/uso terapéutico , Masculino , Femenino , Línea Celular Tumoral , Inhibidores del Factor Xa/farmacología , Inhibidores del Factor Xa/uso terapéutico
10.
Plant Physiol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991561

RESUMEN

Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of two hybrids, an intraspecific hybrid between two maize (Zea may ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Zea may ssp. parviglumis), utilizing a combination of PacBio High Fidelity (HiFi) sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well-phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a bi-parental genome graph, the haplotypic assemblies can facilitate downstream short-reads-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.

12.
Biomimetics (Basel) ; 9(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39056844

RESUMEN

Aerodynamic investigation of a bionic coaxial-rotors unmanned aerial vehicle (UAV) is performed. According to Chinese parasol seed features and flight requirements, the bionic conceptual design of a coaxial-rotors UAV is described. A solution procedure for the numerical simulation method, based on a multi-reference frame (MRF) model, is expressed, and a verification study is presented using the typical case. The aerodynamic design is conducted for airfoil, blade, and coaxial-rotors interference. The aerodynamic performance of the coaxial rotors is investigated by numerical simulation analysis. The rotor/motor integrated experiment verification is conducted to assess the performance of the coaxial-rotors UAV. The results indicate that the UAV has excellent aerodynamic performance and bionic configuration, allowing it to adapt to task requirements. The bionic UAV has a good cruise power load reach of 8.36 kg/kw, and the cruise flying thrust force is not less than 78 N at coaxial-rotor and rotor-balloon distance ratios of 0.39 and 1.12, respectively. It has the "blocks stability phenomenon" formed by the rotor downwash speed decreases and the balloon's additional negative pressure. The present method and the bionic configuration provide a feasible design and analysis strategy for coaxial-rotors UAVs.

13.
Anal Chem ; 96(28): 11533-11541, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38973171

RESUMEN

In the landscape of biomolecular detection, surface-enhanced Raman spectroscopy (SERS) confronts notable obstacles, particularly in the label-free detection of biomolecules, with glucose and other sugars presenting a quintessential challenge. This study heralds the development of a pioneering SERS substrate, ingeniously engineered through the self-assembly of nanoparticles of diverse sizes (Ag1@Ag2NPs). This configuration strategically induces 'hot spots' within the interstices of nanoparticles, markedly amplifying the detection signal. Rigorous experimental investigations affirm the platform's rapidity, precision, and reproducibility, and the detection limit of this detection method is calculated to be 6.62 pM. Crucially, this methodology facilitates nondestructive glucose detection in simulated samples, including phosphate-buffered saline and urine. Integrating machine learning algorithms with simulated serum samples, the approach adeptly discriminates between hypoglycemic, normoglycemic, and hyperglycemic states. Moreover, the platform's versatility extends to the detection and differentiation of monosaccharides, disaccharides, and methylated glycosides, underscoring its universality and specificity. Comparative Raman spectroscopic analysis of various carbohydrate structures elucidates the unique SERS characteristics pertinent to these molecules. This research signifies a major advance in nonchemical, label-free glucose determination with enhanced sensitivity via SERS, laying a new foundation for its application in precision medicine and advancing structural analysis in the sugar domain.


Asunto(s)
Glucosa , Nanopartículas del Metal , Espectrometría Raman , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Glucosa/análisis , Humanos , Plata/química , Propiedades de Superficie , Límite de Detección , Glucemia/análisis
14.
Theranostics ; 14(9): 3653-3673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948066

RESUMEN

Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.


Asunto(s)
Complejo Nuclear Basolateral , Modelos Animales de Enfermedad , Vía de Señalización Hippo , Mitocondrias , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Ratones , Mitocondrias/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Masculino , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/patología , Depresión/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Ratones Transgénicos
15.
Small ; : e2403821, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949043

RESUMEN

Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF3 and QxIC-CH3 are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH3, the single crystal structure reveals that QxIC-CF3 exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF3 exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T80 is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T80 = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.

16.
Vaccine ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38937182

RESUMEN

OBJECTIVE: The aim of this study is to demonstrate that the freeze-dried human rabies vaccine (Vero cell), administered in a four-dose schedule (2-1-1) to the 10-60 years old population, has immunogenicity that is not inferior to the approved five-dose schedule and similar vaccines with a four-dose schedule, and to evaluate its safety. METHOD: A total of 1800 individuals were enrolled and divided into three groups: four-dose test group, four-dose control group, and five-dose control group. The rabies virus neutralizing antibodies were measured using the Rapid Fluorescent Focus Inhibition Test to assess immunogenicity, and the incidence of adverse events and serious adverse events were statistically analyzed. RESULTS: The seroconversion rates 14 days after the first dose and 14 days after the complete course of vaccination were 100% in all three groups. The antibody GMC of the four-dose test group was higher than that of the five-dose control group, but slightly lower than the four-dose control group. Seven days after the first dose, both four-dose regimen groups showed higher seroconversion rates and antibody GMCs compared to the five-dose regimen group, proving that the immunogenic effect of the four-dose regimen seven days post-first vaccination is superior to the five-dose regimen. The overall incidence of adverse events showed no significant difference between the four-dose test group and the five-dose control group, but was significantly lower in the four-dose test group compared to the four-dose control group. CONCLUSION: The vaccine in the four-dose test group is equivalent in immunogenic effect to the four-dose control group vaccine and superior to the five-dose control group vaccine; the safety of the vaccine in the four-dose test group is equivalent to the five-dose control group vaccine and superior to the four-dose control group vaccine. CLINICALTRIALS: gov number: NCT05549908.

17.
Anal Chem ; 96(24): 10038-10045, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847602

RESUMEN

Ferroptosis is a pattern of cell death caused by iron-dependent accumulation of lipid peroxides and is closely associated with the occurrence and development of multiple diseases. Acrolein (ACR), one of the final metabolites of lipid peroxidation, is a reactive carbonyl species with strong biotoxicity. Effective detection of ACR is important for understanding its role in the progression of ferroptosis and studying the specific mechanisms of ferroptosis-mediated diseases. However, visualization detection of ACR during ferroptosis has not yet been reported. In this work, the first ratiometric fluorescent probe (HBT-SH) based on 2-(2'-hydroxyphenyl) benzothiazole (HBT) was designed for tracing endogenous ACR with an unprecedented regiospecific ACR-induced intramolecular cyclization strategy, which employs 2-aminoethanethiol as an ACR-selective recognition receptor. The experimental results showed that HBT-SH has excellent selectivity, high sensitivity (LOD = 0.26 µM) and good biocompatibility. More importantly, the upregulation of ACR levels was observed during ferroptosis in HeLa cells and zebrafish, indicating that ACR may be a specific active molecule that plays an essential biological role during ferroptosis or may serve as a potential marker of ferroptosis, which has great significance for studying the pathological process and treatment options of ferroptosis-related diseases.


Asunto(s)
Acroleína , Ferroptosis , Colorantes Fluorescentes , Pez Cebra , Ferroptosis/efectos de los fármacos , Acroleína/química , Acroleína/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Células HeLa , Animales , Regulación hacia Arriba/efectos de los fármacos , Imagen Óptica , Estructura Molecular
18.
Brain Behav Immun ; 120: 403-412, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871062

RESUMEN

Persistent psychological stress can affect immune homeostasis and is a key factor in the development of depression. Many efforts are focused on the identifcation of pathways that link the immune system and mood disorders. Here, we found that psychological stress caused an increase in the frequency of brain-associated neutrophils and the level of neutrophil-specific antigen CD177 on peripheral neutrophils in male mice. Upregulated levels of blood CD177 are associated with depression in humans. Neutrophil depletion or Cd177 deficiency protected mice from stress-induced behavioral deficits. Importantly, adoptive transfer of CD177+ neutrophils from stressed mice increased the frequency of brain-associated leukocytes, including neutrophils, and caused behavioral defects in naive mice. These effects may be related to the endothelial adhesion advantage of CD177+ neutrophils and the interference of serine protease on endothelial junction. Our findings suggest a critical link between circulating CD177+ neutrophils and psychological stress-driven behavioral disorder.


Asunto(s)
Conducta Animal , Ratones Endogámicos C57BL , Neutrófilos , Estrés Psicológico , Animales , Neutrófilos/metabolismo , Masculino , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Ratones , Conducta Animal/fisiología , Proteínas Ligadas a GPI/metabolismo , Receptores de Superficie Celular/metabolismo , Depresión/metabolismo , Depresión/inmunología , Encéfalo/metabolismo , Humanos
19.
ACS Nano ; 18(26): 17251-17266, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38907727

RESUMEN

Designing adaptive and smart hydrogel wound dressings to meet specific needs across different stages of wound healing is crucial. Here, we present a composite hydrogel, GSC/PBE@Lut, that offers self-regulating release of cupric ions and luteolin and modulates mechanical properties to promote chronic wound healing. The double network hydrogel, GSC, is fabricated through photo-cross-linking of gelatin methacrylate, followed by Cu2+-alginate coordination cross-linking. On one hand, GSC allows for rapid Cu2+ release to eliminate bacteria in the acidic pH environment during inflammation and reduces the hydrogel's mechanical strength to minimize tissue trauma during early dressing changes. On the other hand, GSC enables slow Cu2+ release during the proliferation stage, promoting angiogenesis and biocompatibility. Furthermore, the inclusion of pH- and reactive oxygen species (ROS)-responsive luteolin nanoparticles (PBE@Lut) in the hydrogel matrix allows for controlled release of luteolin, offering antioxidant and anti-inflammatory effects and promoting anti-inflammatory macrophage polarization. In a murine model of Staphylococcus aureus infected wounds, GSC/PBE@Lut demonstrates exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that smart hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic wounds.


Asunto(s)
Antibacterianos , Cobre , Hidrogeles , Luteolina , Staphylococcus aureus , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Cobre/química , Cobre/farmacología , Animales , Ratones , Staphylococcus aureus/efectos de los fármacos , Luteolina/farmacología , Luteolina/química , Antibacterianos/farmacología , Antibacterianos/química , Alginatos/química , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/química , Concentración de Iones de Hidrógeno , Gelatina/química , Humanos , Liberación de Fármacos , Metacrilatos/química , Nanopartículas/química , Pruebas de Sensibilidad Microbiana
20.
Nat Commun ; 15(1): 5305, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906873

RESUMEN

Direct hydrogen production from inexhaustible seawater using abundant offshore wind power offers a promising pathway for achieving a sustainable energy industry and fuel economy. Various direct seawater electrolysis methods have been demonstrated to be effective at the laboratory scale. However, larger-scale in situ demonstrations that are completely free of corrosion and side reactions in fluctuating oceans are lacking. Here, fluctuating conditions of the ocean were considered for the first time, and seawater electrolysis in wave motion environment was achieved. We present the successful scaling of a floating seawater electrolysis system that employed wind power in Xinghua Bay and the integration of a 1.2 Nm3 h-1-scale pilot system. Stable electrolysis operation was achieved for over 240 h with an electrolytic energy consumption of 5 kWh Nm-3 H2 and a high purity (>99.9%) of hydrogen under fluctuating ocean conditions (0~0.9 m wave height, 0~15 m s-1 wind speed), which is comparable to that during onshore water electrolysis. The concentration of impurity ions in the electrolyte was low and stable over a long period of time under complex and changing scenarios. We identified the technological challenges and performances of the key system components and examined the future outlook for this emerging technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...