RESUMEN
RATIONALE: The management of bile duct injury (BDI) remains a considerable challenge in the department of hepatobiliary and pancreatic surgery. BDI is mainly iatrogenic and mostly occurs in laparoscopic cholecystectomy (LC). After more than 2 decades of development, with the increase in experience and technological advances in LC, the complications associated with the procedure have decreased annually. However, bile duct injuries (BDI) still have a certain incidence, the severity of BDI is higher, and the form of BDI is more complex. PATIENT CONCERNS: We report the case of a patient who presented with bile duct injury and formation of a right hepatic duct-duodenal fistula after LC. DIAGNOSES: Based on the diagnosis, a dissection was performed to relieve bile duct obstruction, suture the duodenal fistula, and anastomose the right and left hepatic ducts to the jejunum. INTERVENTION: Based on the diagnosis, a dissection was performed to relieve bile duct obstruction, suture the duodenal fistula, and anastomose the right and left hepatic ducts to the jejunum. OUTCOMES: Postoperative recovery was uneventful, with normal liver function and no complications, such as anastomotic fistula or biliary tract infection. The patient was hospitalized for 11 days postoperatively and discharged. LESSONS: The successful diagnosis and treatment of this case and the summarization of the imaging features and diagnosis of postoperative BDI have improved the diagnostic understanding of postoperative BDI and provided clinicians with a particular clinical experience and basis for treating such diseases.
Asunto(s)
Traumatismos Abdominales , Colecistectomía Laparoscópica , Colestasis , Humanos , Conducto Hepático Común/cirugía , Conductos Biliares/cirugía , Conductos Biliares/lesiones , Colecistectomía , Hígado , Colecistectomía Laparoscópica/efectos adversos , Colecistectomía Laparoscópica/métodos , Colestasis/cirugía , Traumatismos Abdominales/cirugíaRESUMEN
The mechanism of discontinuous transcription for the synthesis of a series of sub-genomic mRNAs to express the structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV) potentially allows for the simultaneous expression of multiple foreign genes. This can occur by insertion of multiple novel independent transcription units between the ORF sequences of the PRRSV genome. Here, an expression cassette consisting of a red fluorescent protein (RFP) gene flanked at its 3' end by transcription-regulating sequences (TRS) and an expression cassette consisting of an iLOV gene flanked at its 5' end by TRS, was constructed. The resulting expression cassette containing a RFP and an iLOV gene were introduced between ORF1b and 2 as well as ORF7 and 3'UTR, respectively, in an infectious PRRSV cDNA clone. Transfection of the resulting clone (pGX-12RFP-73iLOV) into cells resulted in the recovery of a recombinant virus (rGX-12RFP-73iLOV). Simultaneous expression of RFP and iLOV was observed in MARC-145 cells infected with rGX-RFP-iLOV. To test the ability of the PRRSV genome to express all three reporter genes simultaneously, an expression cassette containing the Gluc gene and one containing the iLOV gene were also inserted in between ORF1b and 2 as well as ORF7 and 3'UTR, respectively. This was performed in a recently obtained infectious PRRSV cDNA clone carrying a RFP gene in nsp2. Transfection of the construct (pGX-R-Gluc-iLOV) carrying the three reporter genes into cells allowed the rescue of the recombinant reporter virus (rGX-R-Gluc-iLOV) which showed similar growth characteristics to the parental virus but yielded 100-fold less infectious viruses. Fluorescence microscopy of cells infected with rGX-R-Gluc-iLOV demonstrated the presence of both RFP and iLOV genes. Gluc activities in supernatants harvested at different time points from cells infected with recombinant viruses carrying Gluc showed increased levels of Gluc activity as the infection progressed. This indicated that Gluc gene as well as its activity were acceptable parameters to monitor viral propagation. Our results indicate that it is possible to introduce at least three foreign proteins simultaneously in a PRRSV-based vector and such studies will prove invaluable in our future understanding of these viruses.
Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , ADN Complementario/genética , Regiones no Traducidas 3' , Células Clonales , Transfección , Replicación Viral/genéticaRESUMEN
Pancreatic cancer (PC) is one of the most common malignant tumors in the world with a poor prognosis. There were limited studies investigating the genetic signatures associated with inflammatory responses, tumor microenvironment (TME), and tumor drug sensitivity prediction. In the Cancer Genome Atlas (TCGA) dataset, we constructed an inflammatory response-related genes prognostic signature for PC, and predictive ability of the model was assessed via the International Cancer Genome Consortium (ICGC) database. Then, we explored the differences of TME, immune checkpoint genes and drug resistance genes, and the cancer cell sensitivity to chemotherapy drugs between different risk score group. Based on the TCGA and ICGC databases, we constructed and validated a prognostic model, which consisted of 5 genes (including AHR, F3, GNA15, IL18, and INHBA). Moreover, the prognostic model was independent prognostic factors affecting overall survival (OS). The low-risk score group had better OS, and lower stromal score, compared with patients in the high-risk score group. The difference of antigen-presenting cells, T cell regulation, and drug resistance genes between different risk score groups was found. In addition, the immune checkpoint genes were positively correlation to risk score. The expression levels of AHR, GNA15, IL18, and INHBA were related to the sensitivity of anti-tumor chemotherapy drugs. Gene set enrichment analysis (GSEA) showed significant pathway such as calcium signaling pathway and p53 signaling pathway. We successfully constructed a 5-inflammatory response-related gene signature to predict survival, TME, and cancer cell sensitivity to chemotherapy drugs in PC patients. Furthermore, substantiation was warranted to verify the role of these genes in tumorigenesis.
Asunto(s)
Interleucina-18 , Neoplasias Pancreáticas , Humanos , Carcinogénesis , Neoplasias Pancreáticas/genética , Microambiente Tumoral , Neoplasias PancreáticasRESUMEN
Pancreatic cancer (PC) has a dismal prognosis despite advancing scientific and technological knowledge. The exploration of novel genes is critical to improving current therapeutic measures. This research is aimed at selecting hub genes that can act as candidate therapeutic target genes and as prognostic biomarkers in PC. Gene expression profiles of datasets GSE101448, GSE15471, and GSE62452 were extracted from the GEO database. The "limma" package was performed to select differentially expressed genes (DEGs) between PC and normal tissue samples in each dataset. Robust rank aggregation (RRA) algorithm was conducted to integrate multiple expression profiles and identify robust DEGs. GO analysis and KEGG analysis were conducted to identify the functional correlation of the DEGs. The CIBERSORT algorithm was conducted to estimate the immune cell composition of each tissue sample. STRING and Cytoscape were used to establish the protein-protein interaction (PPI) network. The cytoHubba plugin in Cytoscape was performed to identify hub genes. Survival analysis based on hub gene expression was performed with clinical information from TCGA database. 566 robust DEGs (338 upregulated genes and 226 downregulated genes) were identified. Tumor tissue had a higher infiltration of resting dendritic cells and tumor-associated macrophages (TAM), including M0, M1, and M2 macrophages, while infiltration levels of B memory cells, plasma cells, T cells CD8, T follicular helper cells, and NK cells in normal tissue were relatively higher. GO terms and KEGG pathway analysis results revealed enrichment in tumor-associated pathways, including the extracellular matrix organization, cell-substrate adhesion cytokine-cytokine receptor interaction, calcium signaling pathway, and glycine, serine, and threonine metabolism, to name a few. Finally, FN1, MSLN, PLAU, and VCAN were selected as hub genes. High expression of FN1, MSLN, PLAU, and VCAN in PC significantly correlated with poor prognosis. Integrated transcriptomic analysis was used to provide new insights into PC pathogenesis. FN1, MSLN, PLAU, and VCAN may be considered as novel biomarkers of PC.
Asunto(s)
Neoplasias Pancreáticas , Transcriptoma , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias PancreáticasRESUMEN
Getah virus (GETV) is a mosquito-borne virus of the genus Alphavirus in the family Togaviridae and, in recent years, it has caused several outbreaks in animals. The molecular basis for GETV pathogenicity is not well understood. Therefore, a reverse genetic system of GETV is needed to produce genetically modified viruses for the study of the viral replication and its pathogenic mechanism. Here, we generated a CMV-driven infectious cDNA clone based on a previously isolated GETV strain, GX201808 (pGETV-GX). Transfection of pGETV-GX into BHK-21 âcells resulted in the recovery of a recombinant virus (rGETV-GX) which showed similar growth characteristics to its parental virus. Then three-day-old mice were experimentally infected with either the parental or recombinant virus. The recombinant virus showed milder pathogenicity than the parental virus in the mice. Based on the established CMV-driven cDNA clone, subgenomic promoter and two restriction enzyme sites (BamHI and EcoRI) were introduced into the region between E1 protein and 3'UTR. Then the green fluorescent protein (GFP), red fluorescent protein (RFP) and improved light-oxygen-voltage (iLOV) genes were inserted into the restriction enzyme sites. Transfection of the constructs carrying the reporter genes into BHK-21 âcells proved the rescue of the recombinant reporter viruses. Taken together, the establishment of a reverse genetic system for GETV provides a valuable tool for the study of the virus life cycle, and to aid the development of genetically engineered GETVs as vectors for foreign gene expression.
Asunto(s)
Alphavirus , Enfermedades Transmisibles , Infecciones por Citomegalovirus , Alphavirus/genética , Animales , Células Clonales , ADN Complementario/genética , Ratones , Mosquitos VectoresRESUMEN
OBJECTIVE: Liver cancer (LC), one of the familiar malignancies, has a very high morbidity all over the world. The onset of the disease is hidden, and the patients usually do not express any special symptoms. Most of them will have been developed to the middle and later stage when they are diagnosed. This is one of the main reasons why the prognosis of LC is extremely pessimistic all the year round. Recently, researchers have focused mainly on molecular studies, among which LncRNA is a hot spot. This research aims to explore the biological behaviors of LncRNA NKILA and miR-485-5p in LC cells and verify the relationship between them, thereby providing a new theoretical basis for future prevention and treatment. METHODS: Ninety-four early LC patients admitted to our hospital from January 2015 to January 2017 were regarded as the research objects. In addition, human LC cells SMMC-7721, HepG2, and normal liver cells HL-7702 were purchased. The LncRNA NKILA and miR-485-5p level in cancer and adjacent tissues, LC, and normal liver cells of patients was tested by PCR. Patients were followed up for 3 years. Then, LncRNA NKILA and miR-485-5p's effects on prognosis and cell biological behavior were analyzed. At last, the relationship between LncRNA NKILA and miR-485-5p was assessed by a dual-luciferase reporter assay. RESULTS: The LncRNA NKILA expression was high in LC tissues and cells (P < 0.050), while miR-485-5p was low compared with the normal adjacent tissues (P < 0.050). Prognostic follow-up manifested that high LncRNA NKILA or low miR-485-5p could predict the poor prognosis and high mortality risk of the patients (P < 0.050). LC cells with downregulated LncRNA NKILA documented inhibited proliferation, invasion, and EMT, while the apoptosis level of the cells increased (P < 0.050). The proliferation, invasion, and EMT were inhibited by miR-485-5p increase, while the apoptosis of the cells decreased after upregulating miR-485-5p (P < 0.050). Online websites predicted that LncRNA NKILA had a binding site with miR-485-5p, and dual-luciferase reporter assay confirmed that LncRNA NKILA could directly target with miR-485-5p (P < 0.050). The miR-485-5p in LC cells increased after LncRNA NKILA was silenced (P < 0.050). The rescue experiment documented that LncRNA NKILA inhibition on LC cells was reversed by inhibiting miR-485-5p (P < 0.050). CONCLUSION: The LncRNA NKILA with high expression advances LC cell proliferation, invasion, and EMT by targeting miR-485-5p.
RESUMEN
Honeysuckle has been used in the treatment of influenza virus infection for thousands of years in China. However, its main active components and the functional mechanisms remain to be elucidated. Here, four honeysuckle extracts, including acids extract, flavonoids extract, total extract and acids-flavonoids mixture, were prepared to clarify the main active antiviral components. The cytopathic effect reduction assay showed that all the four extracts inhibited the replication of influenza viruses H1N1, H3N2 and the oseltamivir-resistant mutant strain H1N1-H275Y. The acids-flavonoids mixture had the strongest inhibitory effects in vitro with EC50 values of 3.8, 4.1, and > 20 µg/mL against H1N1, H3N2 and H1N1-H275Y, respectively, showing competitive antiviral activity with oseltamivir and ribavirin. Honeysuckle acids extract also showed the most significant antiviral activity in vivo. Oral administration of the acids extract at a dosage of 600 mg/kg/d effectively alleviated viral pneumonia, maintained body weight and improved the survival rate to 30% of the mice infected with a lethal dose of H1N1. The results of time-of-drug addition experiment and neuraminidase (NA) inhibition assay showed that honeysuckle extracts had a broad-spectrum inhibitory effect against influenza virus NAs. The flavonoid extract showed the strongest inhibitory effect on the NA of influenza virus H7N9 with an IC50 of 24.7 µg/mL. These results suggested that these extracts might exert their antiviral activity by suppressing the release of influenza viruses. Briefly, our findings demonstrate that acids and flavonoids extracts of honeysuckle are the major antiviral active components, and the acids extract has the potential to be developed into an antiviral agent against influenza virus, especially for oseltamivir-resistant viruses.
Asunto(s)
Gripe Humana , Lonicera , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , China , Farmacorresistencia Viral , Humanos , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Humana/tratamiento farmacológico , Lonicera/efectos de los fármacos , Ratones , Neuraminidasa/uso terapéutico , Oseltamivir/uso terapéutico , Extractos Vegetales/farmacologíaRESUMEN
Getah virus (GETV) has caused many outbreaks in animals in recent years. Monitoring of the virus and its related diseases is crucial to control the transmission of the virus. In the summer of 2018, we conducted routine tests on clinical samples from different pig farms in Guangxi province, South China, and isolated and characterized a GETV strain, named GX201808. Cytopathic effects were observed in BHK-21 cells inoculated with GX201808. The expression of E2 protein of GETV could be detected in virus-infected cells by indirect immunofluorescence assays. Electron microscopic analysis showed that the virus particles were spherical and ~70 nm in diameter with featured surface fibers. The multistep growth curves showed the virus propagated well in the BHK-21 cells. Molecular genetic analysis revealed that GX201808 belongs to Group 3, represented by Kochi-01-2005 isolated in Japan in 2005, and it clustered closely with the recently reported Chinese strains isolated from pigs, cattle, and foxes. A comparison of the identities of nucleotides and amino acids in the coding regions demonstrated that the GX201808 showed the highest amino acid identity (99.6%) with the HuN1 strain, a highly pathogenic isolate resulting in an outbreak of GETV infection in swine herds in Hunan province in 2017. In the present study, GETV was identified and isolated for the first time in Guangxi province of southern China, suggesting that future surveillance of this virus should be strengthened.
RESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV) has had a devastating impact on the pig industry in China, and monitoring its genetic diversity is important for epidemiological surveillance and understanding its evolution. Here, we determine the complete genome sequences of two PRRSV strains, GXYL1403 and GXNN1839. Comparative, phylogenetic, and recombination detection program analyses show that the two isolates are recombinant strains with large-fragment amino acid deletions in nsp2. GXYL1403 possesses a unique deletion region of 124 amino acids in nsp2, and GXNN1839 contains a deletion of 131 amino acids in nsp2 as compared with VR2332. Further analysis of the full-length sequence suggests that GXYL1403 is a natural recombinant between sublineages 8.1 (CH-1a like) and 8.3 (JXA1-like). The recombination site of GXYL1403 is located in nsp9-nsp12 (8961nt-11181nt). GXNN1839 is a natural recombinant between the lineage 5 (VR-2332-like) and lineage 1 (NADC30-like) strains. The recombination events occurred in nsp9 (7872nt-8162nt) and in ORF2 (12587nt-13282nt) in the genome of GXNN1839. These results provide new evidence that PRRSV strains circulating in the environment have undergone recombination among the different lineages or sublineages of field strains, and these add to our understanding of RNA combination events that occur in PRRSV.
RESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV) has been used as a gene expression vector in the development of vaccines. Most of these recombinant PRRSV vectors express only a single foreign gene through either an internal insertion in the hypervariable region of nsp2 or expression cassette and some of these recombinant vectors are genetically unstable. Here, we combined internal insertion in nsp2 and expression cassette methods to generate a novel recombinant PRRSV stably expressing the red fluorescence protein (RFP) and the green fluorescence protein (GFP) genes. Biological characteristic analysis of the recombinant PRRSV carrying the two marker genes, rGX-RFP-GFP, showed that it displayed similar growth kinetics and yet it yielded less infectious viruses when compared to the parental virus rGXAM. Co-expression of both the RFP and GFP was observed using confocal fluorescence microscopy when the rGX-RFP-GFP viruses infected MARC-145 cells. Furthermore, the PRRSV-based two-marker gene expression vector is genetically stable during 20 serial passages in MARC-145 cells. These data demonstrate that it is possible to express two interested immunogens from a single PRRSV vector.
RESUMEN
In recent years, the availability of reverse genetics systems for porcine reproductive and respiratory syndrome virus (PRRSV) has created new perspectives for the use of recombinant viruses as expression vectors. Most of these recombinant PRRSV vectors express foreign genes through either an independent transcription unit inserted in ORF1b and ORF2, or in ORF7 and the 3' UTR. The aim of this study was to find an alternative site for foreign gene insertion into the PRRSV genome. Here, we constructed an infectious cDNA clone for a cell-adapted PRRSV strain, GXNN1396-P96. This cDNA-clone-derived recombinant virus (rGXAM) was comparable in its growth kinetics in MARC-145 cells to the parental virus, GX1396-P96. Using the infectious cDNA-clone, we inserted an independent transcription unit in ORF4 and ORF5a to generate a novel PRRSV-based recombinant virus expressing the green fluorescent protein (GFP) gene. Biological characterization of the recombinant virus, rGX45BSTRS-GFP, showed that it maintained similar growth characteristics but produced fewer infectious virions than the parental PRRSV. These data demonstrate that the ORF4 and ORF5a site is able to tolerate the insertion of foreign genes.
Asunto(s)
Marcadores Genéticos/genética , Sistemas de Lectura Abierta/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Animales , Línea Celular , Proteínas Fluorescentes Verdes/genética , Porcinos , Replicación Viral/genéticaRESUMEN
Herein, we report a fine-tuning of the two-dimensional alkali-pyridyl coordination assemblies facilely realized by surface reaction between tetrapyridyl-porphyrin molecules and alkali halides on Ag(111) under a solventless ultrahigh vacuum condition. High-resolution scanning tunneling topography and X-ray photoelectron spectra reveal the formation of alkali-pyridyl coordination and the induced conformational tuning of the porphyrin macrocycle cores. Furthermore, employing other different alkali halide substitutes, we demonstrate a fine-tuning of the metal-organic nanostructures at the sub-Å scale. Postdeposition of Fe onto the as-formed precursor layer yields a two-dimensional bimetallic framework structure, manifesting a functionalization of the metal-organic interfaces.
RESUMEN
Because it is highly contagious, the influenza A virus (IAV) has the potential to cause pandemics in humans. The emergence of drug-resistant strains requires the development of new chemical therapeutics. Oroxylin A (OA) is a flavonoid which has been shown to have antioxidant and antitumor effects. However, intensive studies in which OA fights against different influenza virus strains and the underlying antiviral mechanisms have not been reported. In our study, the antiviral activities in cells and in mice, the preliminary mechanisms of OA were investigated. Our data show that it can inhibit A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and oseltamivir-resistant A/FM/1/47-H275Y (H1N1-H275Y) viruses in MDCK cells in a dose-dependent manner with inhibitory rates of 70.9%, 59.5% and 23.2%, respectively, at 50µM doses. Orally administered OA effectively protected mice from H1N1 virus-induced death, body weight loss and lung injury, with a survival rate of 60.0% at 100mg/kg/d dose. In addition, the H1N1 M1 gene transcription and protein synthesis were suppressed by 43.7% and 33.2%, respectively, in the late biosynthesis stage. This resulted in inhibition of viral replication. Furthermore, we found that OA has a neuraminidase (NA) inhibitory effect with IC50 values for H1N1-H275Y and A/Anhui/1/2013-R294K (H7N9-R294K) of 241.4µM and 203.6µM, respectively. Interferons (IFNs) produced by the virally infected cells play important roles in antiviral defense, therefore, IFN levels in the blood were also tested in mice. We found that IFN-ß and IFN-γ in the OA 100mg/kg/d group were markedly increased by 24.5pg/mL and 859.9pg/mL, respectively, compared with those in the model group. This indicated that OA could induce the secretion of IFNs. The potent inhibition of virus replication and NA inhibitory activity, as well as the promotion of IFN production suggest that OA could be a drug candidate to fight against IAVs including oseltamivir-resistant strains.
Asunto(s)
Antivirales/farmacología , Flavonoides/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Interferones/biosíntesis , Neuraminidasa/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Células CHO , Cricetinae , Cricetulus , Perros , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Ratones Endogámicos ICR , Neuraminidasa/metabolismo , Replicación Viral/fisiologíaRESUMEN
Using scanning tunnelling microscopy (STM), we demonstrate that Au-pyridyl coordination can be used to assemble two-dimensional coordination network structures on metal surfaces. The polymorphism of the coordination network structures can be manipulated at both the micro- and nanoscale. Using the same organic ligand, we assembled two distinct polymorphic network structures, which were assisted by threefold Au-pyridyl coordination on Ag(111) with predeposited Au atoms (α-network), and by twofold Au-pyridyl coordination on Au(111) (ß-network), respectively. Specifically on the Au(111) surface, single-oriented ß-network domains as large as ≈400â nm were selected by thermal annealing. We ascribe this global control strategy to distinct Au bonding modes tuned by molecule-substrate interactions. Using an STM tip, we succeeded in creating α-network domains (≈10â nm) locally within the homogeneous ß-network domain areas on Au(111) in a controlled manner.
RESUMEN
A self-assembled Fe-porphyrin coordination chain structure on a Au(111) surface is investigated by scanning tunneling microscopy (STM), revealing structural reconstruction resulting from an alternative change of molecular orientations and spontaneous formation of uniformly sized Fe polynuclears. The alternation of the molecular orientations is ascribed to the cooperation of the attractive coordination and the intermolecular steric repulsion as elucidated by high-resolution STM observations. Furthermore, chemical control experiments are carried out to determine the number of atoms in an Fe polynuclear, suggesting a tentative Fe dinuclear-module that serves not only as a coordination center to link porphyrin units together but also as a "dangling" site for further functionalization by a guest terpyridine ligand. The chain structure and the Fe polynuclears are stable up to 320 K as revealed by real-time STM scanning. Annealing at higher temperatures converts the chain structure into a two-dimensional coordination structure.
RESUMEN
Acute acalculous cholecystitis has a high mortality rate due to the difficulties in early diagnosis and high rate of complications like empyema, gangrene and perforation. We report a case of 20-year-old male with acute severe pancreatitis, acute renal failure and acute peripancreatic fluid collection who was transferred to our department after blood filtration treatment in ICU. After percutaneous catheter drainage for 20 hours, the patient got a high fever. Computed tomography revealed retroperitoneal colon injury. In this case, percutaneous catheter drainage was performed again and the pus cavity was flushed regularly, after which the patient's state gradually improved. Unpredictably, septic shock appeared on the 51(st) day. Repeated computed tomography revealed acute acalculous cholecystitis and abscess formation. After percutaneous transhepatic gallbladder catheterization and drainage, the patient got better gradually. Three months later the retroperitoneal catheter was removed. Four months later, ultrasound examination showed normal gallbladder and the catheter was removed.
RESUMEN
BACKGROUND: Apoptosis is involved in the mechanism of lumbar disc disease (LDD). BCL-2 has been shown to play an anti-apoptosis role. The present study aims to examine the association of -938C > A polymorphism of the BCL-2 gene with the presence and severity of LDD in the Chinese Han population. METHODS: This study consisted of 325 patients with LDD and 236 normal controls. The grade of disc degeneration was determined according to Schneiderman's classification for MRI. -938C > A polymorphism was determined by "slow-down" polymerase chain reaction (PCR) method. RESULTS: The genotype frequency of -938C > A polymorphism was consistent with Hardy-Weinberg equilibrium (p = 0.136). Higher frequencies of -938CA and AA genotypes were found in patients with LDD compared with normal controls (p = 0.019). Furthermore, there were higher frequencies of the A allele in LDD patients than in normal controls (p = 0.005). Unconditional logistic regression analysis revealed that -938CA and AA genotypes were significantly associated with the presence of LDD compared with CC genotype (p = 0.041; OR 1.449; 95% CI 1.015 - 2.067 and p = 0.015; OR 2.102; 95% CI 1.158 - 3.813, respectively). The A allele was significantly associated with the susceptibility to LDD compared with the C allele (p = 0.005; OR 1.436; 95% CI 1.113 - 1.851). In addition, -938CA and AA genotypes, as well as the A allele were found to be associated with the risk for higher degenerative grades of LDD compared with the CC genotype and C allele, respectively (p = 0.017 and p = 0.003, respectively). CONCLUSIONS: The -938C > A polymorphism of BCL-2 may be associated with the presence and severity of LDD in the Chinese Han population.