Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38534550

RESUMEN

EEG, which can provide brain alteration information via recording the electrical activity of neurons in the cerebral cortex, has been widely used in neurophysiology. However, conventional wet electrodes in EEG monitoring typically suffer from inherent limitations, including the requirement of skin pretreatment, the risk of superficial skin infections, and signal performance deterioration that may occur over time due to the air drying of the conductive gel. Although the emergence of dry electrodes has overcome these shortcomings, their electrode-skin contact impedance is significantly high and unstable, especially in hair-covered areas. To address the above problems, an active claw-shaped dry electrode is designed, moving from electrode morphological design, slurry preparation, and coating to active electrode circuit design. The active claw-shaped dry electrode, which consists of a claw-shaped electrode and active electrode circuit, is dedicated to offering a flexible solution for elevating electrode fittings on the scalp in hair-covered areas, reducing electrode-skin contact impedance and thus improving the quality of the acquired EEG signal. The performance of the proposed electrodes was verified by impedance, active electrode circuit, eyes open-closed, steady-state visually evoked potential (SSVEP), and anti-interference tests, based on EEG signal acquisition. Experimental results show that the proposed claw-shaped electrodes (without active circuit) can offer a better fit between the scalp and electrodes, with a low electrode-skin contact impedance (18.62 KΩ@1 Hz in the hairless region and 122.15 KΩ@1 Hz in the hair-covered region). In addition, with the active circuit, the signal-to-noise ratio (SNR) of the acquiring EEG signal was improved and power frequency interference was restrained, therefore, the proposed electrodes can yield an EEG signal quality comparable to wet electrodes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38083276

RESUMEN

Human-machine interfaces (HMIs) based on Electro-oculogram (EOG) signals have been widely explored. However, due to the individual variability, it is still challenging for an EOG-based eye movement recognition model to achieve favorable results among cross-subjects. The classical transfer learning methods such as CORrelation Alignment (CORAL), Transfer Component Analysis (TCA), and Joint Distribution Adaptation (JDA) are mainly based on feature transformation and distribution alignment, which do not consider similarities/dissimilarities between target subject and source subjects. In this paper, the Kullback-Leibler (KL) divergence of the log-Power Spectral Density (log-PSD) features of horizontal EOG (HEOG) between the target subject and each source subject is calculated for adaptively selecting partial subjects that suppose to have similar distribution with target subject for further training. It not only consider the similarity but also reduce computational consumption. The results show that the proposed approach is superior to the baseline and classical transfer learning methods, and significantly improves the performance of target subjects who have poor performance with the primary classifiers. The best improvement of Support Vector Machines (SVM) classifier has improved by 13.1% for subject 31 compared with baseline result. The preliminary results of this study demonstrate the effectiveness of the proposed transfer framework and provide a promising tool for implementing cross-subject eye movement recognition models in real-life scenarios.


Asunto(s)
Electroencefalografía , Movimientos Oculares , Humanos , Electrooculografía/métodos , Electroencefalografía/métodos , Movimiento , Máquina de Vectores de Soporte
3.
Artículo en Inglés | MEDLINE | ID: mdl-38083766

RESUMEN

Pathogenic variants of the KCNQ2 gene often induces neonatal epilepsy in clinical. For better treatment, infants with confirmed KCNQ2 pathogenic variant and epilepsy symptoms need to adjust their treatment plans according to the outcome after taking antiseizure medicines (ASMs). This process is often time-consuming and requires long-term follow-up, which undoubtedly causes unnecessary psychological and economic burdens. In this study, we investigate the feasibility to predict the outcome of KCNQ2 patients via Electroencephalogram (EEG). By using the combination of deep networks and classical classifiers, the abnormal brain pathological activities recorded in EEGs can be encoded into deep features and decoded into specific KCNQ2 outcomes, thus taking the advantage of both powerful feature extraction capability from deep networks and stronger classification ability from classical classifiers. Specifically, we acquire 10-channel EEG signals from 33 infants with KCNQ2 pathogenic variants after taking ASMs. Two well-trained models (Resnet-50 and Resnet-18) are employed to extract deep features from the EEG spectrums. We achieve an accuracy of 78.7% to predict the KCNQ2 outcome of each infant. To our best knowledge, this is the first study to employ potential EEG pathological differences to predict the outcomes of KCNQ2 patients. The investigation of automatic KCNQ2 outcome prediction may contribute to a more convenient diagnosis mechanism for KCNQ2 patients.


Asunto(s)
Epilepsia , Lactante , Recién Nacido , Humanos , Pronóstico , Epilepsia/diagnóstico , Aprendizaje Automático , Electroencefalografía , Canal de Potasio KCNQ2/genética
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1071-1083, 2023 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-38151929

RESUMEN

The aging population and the increasing prevalence of chronic diseases in the elderly have brought a significant economic burden to families and society. The non-invasive wearable sensing system can continuously and real-time monitor important physiological signs of the human body and evaluate health status. In addition, it can provide efficient and convenient information feedback, thereby reducing the health risks caused by chronic diseases in the elderly. A wearable system for detecting physiological and behavioral signals was developed in this study. We explored the design of flexible wearable sensing technology and its application in sensing systems. The wearable system included smart hats, smart clothes, smart gloves, and smart insoles, achieving long-term continuous monitoring of physiological and motion signals. The performance of the system was verified, and the new sensing system was compared with commercial equipment. The evaluation results demonstrated that the proposed system presented a comparable performance with the existing system. In summary, the proposed flexible sensor system provides an accurate, detachable, expandable, user-friendly and comfortable solution for physiological and motion signal monitoring. It is expected to be used in remote healthcare monitoring and provide personalized information monitoring, disease prediction, and diagnosis for doctors/patients.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Anciano , Monitoreo Fisiológico/métodos , Enfermedad Crónica
5.
Bioengineering (Basel) ; 10(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37370589

RESUMEN

Neonatal seizure is an important clinical symptom of brain dysfunction, which is more common in infancy than in childhood. At present, video electroencephalogram (VEEG) technology is widely used in clinical practice. However, video electroencephalogram technology has several disadvantages. For example, the wires connecting the medical instruments may interfere with the infant's movement and the gel patch electrode or disk electrode commonly used to monitor EEG may cause skin allergies or even tears. For the above reasons, we developed a wearable multi-sensor platform for newborns to collect physiological and movement signals. In this study, we designed a second-generation multi-sensor platform and developed an automatic detection algorithm for neonatal seizures based on ECG, respiration and acceleration. Data for 38 neonates were recorded at the Children's Hospital of Fudan University in Shanghai. The total recording time was approximately 300 h. Four of the patients had seizures during data collection. The total recording time for the four patients was approximately 34 h, with 30 seizure episodes recorded. These data were evaluated by the algorithm. To evaluate the effectiveness of combining ECG, respiration and movement, we compared the performance of three types of seizure detectors. The first detector included features from ECG, respiration and acceleration records; the second detector incorporated features based on respiratory movement from respiration and acceleration records; and the third detector used only ECG-based features from ECG records. Our study illustrated that, compared with the detector utilizing individual modal features, multi-modal feature detectors could achieve favorable overall performance, reduce false alarm rates and give higher F-measures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...