Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Cell Mol Neurobiol ; 44(1): 36, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637346

RESUMEN

Surgical brain injury (SBI), induced by neurosurgical procedures or instruments, has not attracted adequate attention. The pathophysiological process of SBI remains sparse compared to that of other central nervous system diseases thus far. Therefore, novel and effective therapies for SBI are urgently needed. In this study, we found that neutrophil extracellular traps (NETs) were present in the circulation and brain tissues of rats after SBI, which promoted neuroinflammation, cerebral edema, neuronal cell death, and aggravated neurological dysfunction. Inhibition of NETs formation by peptidylarginine deiminase (PAD) inhibitor or disruption of NETs with deoxyribonuclease I (DNase I) attenuated SBI-induced damages and improved the recovery of neurological function. We show that SBI triggered the activation of cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING), and that inhibition of the cGAS-STING pathway could be beneficial. It is worth noting that DNase I markedly suppressed the activation of cGAS-STING, which was reversed by the cGAS product cyclic guanosine monophosphate-adenosine monophosphate (cGMP-AMP, cGAMP). Furthermore, the neuroprotective effect of DNase I in SBI was also abolished by cGAMP. NETs may participate in the pathophysiological regulation of SBI by acting through the cGAS-STING pathway. We also found that high-dose vitamin C administration could effectively inhibit the formation of NETs post-SBI. Thus, targeting NETs may provide a novel therapeutic strategy for SBI treatment, and high-dose vitamin C intervention may be a promising translational therapy with an excellent safety profile and low cost.


Asunto(s)
Lesiones Encefálicas , Trampas Extracelulares , Animales , Ratas , Encéfalo , Lesiones Encefálicas/tratamiento farmacológico , Ácido Ascórbico , Desoxirribonucleasa I/farmacología
2.
Langmuir ; 40(12): 6212-6219, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38497336

RESUMEN

Polyelectrolytes, such as poly(acrylic acid) (PAA), can effectively mitigate CaCO3 scale formation. Despite their success as antiscalants, the underlying mechanism of binding of Ca2+ to polyelectrolyte chains remains unresolved. Through all-atom molecular dynamics simulations, we constructed an adsorption isotherm of Ca2+ binding to sodium polyacrylate (NaPAA) and investigated the associated binding mechanism. We find that the number of calcium ions adsorbed [Ca2+]ads to the polymer saturates at moderately high concentrations of free calcium ions [Ca2+]aq in the solution. This saturation value is intricately connected with the binding modes accessible to Ca2+ ions when they bind to the polyelectrolyte chain. We identify two dominant binding modes: the first involves binding to at most two carboxylate oxygens on a polyacrylate chain, and the second, termed the high binding mode, involves binding to four or more carboxylate oxygens. As the concentration of free calcium ions [Ca2+]aq increases from low to moderate levels, the polyelectrolyte chain undergoes a conformational transition from an extended coil to a hairpin-like structure, enhancing the accessibility to the high binding mode. At moderate concentrations of [Ca2+]aq, the high binding mode accounts for at least one-third of all binding events. The chain's conformational change and its consequent access to the high binding mode are found to increase the overall Ca2+ ion binding capacity of the polyelectrolyte chain.

3.
Glob Chang Biol ; 30(3): e17213, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436125

RESUMEN

Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.


Asunto(s)
Oryza , Suelo , Carbono , China , Geografía
4.
ACS Macro Lett ; 13(3): 322-327, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38395049

RESUMEN

We construct a coarse-grained molecular dynamics model based on poly(ethylene oxide) and lithium bis(trifluoromethane)sulfonimide salt to examine the combined effects of temperature and salt concentration on the transport properties. Salt doping notably slows the dynamics of polymer chains and reduces ion diffusivity, resulting in a glass transition temperature increase proportional to the salt concentration. The polymer diffusion is shown to be well represented by a modified Vogel-Fulcher-Tamman (M-VFT) equation that accounts for both the temperature and salt concentration dependence. Furthermore, we find that, at any temperature, the concentration dependence of the conductivity is well described by the product of its infinite dilution value and a correction factor accounting for the reduced segmental mobility with increasing salt concentration. These results highlight the important role of polymer segmental mobility in the salt concentration dependence of ion conductivity for temperatures near and above the glass transition.

5.
Nano Lett ; 24(8): 2520-2528, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38359360

RESUMEN

Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Lignina/química , Cobre , Oxidorreductasas , Catálisis , Aminoácidos
7.
ACS Nano ; 17(24): 24753-24762, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38061002

RESUMEN

Toehold-mediated DNA strand displacement (TMSD) is a powerful tool for controlling DNA-based molecular reactions and devices. However, the slow kinetics of TMSD reactions often limit their efficiency and practical applications. Inspired by the chemical structures of natural DNA-operating enzymes (e.g., helicase), we designed lysine-rich peptides to self-assemble with DNA-based systems. Our approach allows for accelerating the TMSD reactions, even during multiple displacement events, enhancing their overall efficiency and utility. We found that the acceleration is dependent on the peptide's sequence, length, and concentration as well as the length of the DNA toehold domain. Molecular dynamics simulations revealed that the peptides promote toehold binding between the double-stranded target and the single-stranded invader, thereby facilitating strand displacement. Furthermore, we integrated our approach into a horseradish peroxidase-mimicking DNAzyme, enabling the dynamic modulation of enzymatic functions on and off. We anticipate that the established acceleration of strand displacement reactions and the modulation of enzymatic activities offer enhanced functionality and control in the design of programmable DNA-based nanodevices.


Asunto(s)
ADN Catalítico , ADN Catalítico/metabolismo , ADN/química , Cinética
8.
Phys Rev Lett ; 131(21): 218201, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072599

RESUMEN

Mixing solutions of oppositely charged macromolecules can result in liquid-liquid phase separation into a polymer-rich coacervate phase and a polymer-poor supernatant phase. Here, we show that charge asymmetry in the constituent polymers can slow down the coarsening dynamics, with an apparent growth exponent that deviates from the well-known 1/3 for neutral systems and decreases with increasing degrees of charge asymmetry. Decreasing solvent quality accelerates the coarsening dynamics for asymmetric mixtures but slows down the coarsening dynamics for symmetric mixtures. We rationalize these results by examining the interaction potential between merging droplets.

9.
Nano Lett ; 23(24): 11461-11468, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38079506

RESUMEN

Challenges persist in replicating enzyme-like active sites with functional group arrangements in supramolecular catalysis. In this study, we present a supramolecular material comprising Fmoc-modified histidine and copper. We also investigated the impact of noncanonical amino acids (δmH and εmH), isomers of histidine, on the catalytic process. The Fmoc-δmH-based nanoassembly exhibits an approximately 15-fold increase in oxidative activity and an ∼50-fold increase in hydrolytic activity compared to Fmoc-εmH (kcat/Km). This distinction arises from differences in basicity and ligation properties between the ε- and δ-nitrogen of histidine. The addition of guanosine monophosphate further enhances the oxidative activity of the histidine- and methylated histidine-based catalysts. The Fmoc-δmH/Cu2+-based nanoassembly catalyzes the oxidation/hydrolysis cascade of 2',7'-dichlorofluorescein diacetate, benefiting from the synergistic effect between the copper center and the nonligating ε-nitrogen of histidine. These findings advance the biomimetic catalyst design and provide insights into the mechanistic role of essential residues in natural systems.


Asunto(s)
Biomimética , Histidina , Catálisis , Cobre , Histidina/química , Hidrólisis , Nitrógeno , Estrés Oxidativo
10.
Chem Commun (Camb) ; 59(98): 14540-14543, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37987146

RESUMEN

DNA is self-assembled with Fmoc-amino acids and Cu2+ to construct a supramolecular catechol oxidase-mimetic catalyst, which exhibits remarkable activity in catalyzing colorimetric reactions. This catalytic system is used for the detection of DNA hybridization with a high selectivity and a low detection limit.


Asunto(s)
Colorimetría , Oxidorreductasas , ADN/química , Catecol Oxidasa , Aminoácidos , Límite de Detección
11.
BMC Cancer ; 23(1): 989, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848823

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are considered key players in the formation and development of tumors. Herein, Gene Expression Profiling Interactive Analysis (GEPIA) was employed as a bioinformatics technology. LINC02587 is differentially expressed in bladder urothelial cancer, glioblastoma, lung adenocarcinoma, lung SCC, melanoma, and other tumor tissue and cells. However, its impact on the emergence of glioma and its mechanism is remaining elusive. METHODS: Some of the in vitro assays employed in this study were the CCK-8 / Annexin-V / Transwell assays, colony formation, and wound healing, together with Western blot (WB) evaluation. MSP / BSP assays were employed for assessing the CpG island's methylation status in the LINC02587 promoter. Through transcriptome, ferroptosis-related experiments, and WB evaluation, it was confirmed that LINC02587 is correlated with the regulation of ferroptosis in tumor cells, and CoQ-Fsp1 is one of its regulatory pathways. Moreover, the underlined in-vitro results were further validated by in-vivo studies. RESULTS: The current study shows that the promoter sequence of LINC02587 is regulated by methylation. The silencing of LINC02587 can inhibit cellular proliferative, migrative, and invasive properties, and induce ferroptosis within gliomas through the CoQ-FSP1 pathway. CONCLUSIONS: LINC02587 is likely to be a novel drug target in treating glioma.


Asunto(s)
Ferroptosis , Glioblastoma , Glioma , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Metilación de ADN , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
12.
ACS Appl Mater Interfaces ; 15(42): 48945-48951, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823579

RESUMEN

We have engineered a colorimetric sensor capable of selective and sensitive detection of amino acids. This sensor employs a supramolecular copper-dependent oxidase mimic as the probe, stemming from our prior research. The oxidase mimic is constructed through the self-assembly of commercially available guanosine monophosphate (GMP), Fmoc-lysine, and Cu2+. It catalyzes the formation of a red product with a maximum absorbance at 510 nm. The changes in color and absorbance are responsive to both the concentrations and types of amino acids present. This effect is most pronounced in the presence of histidine, with a detection limit (LOD) of 6.4 nM. Furthermore, the catalytic probe can distinguish histidine from histamine and imidazole propionate, as well as 1-methyl-histidine from 3-methyl-histidine, based on their distinct coordination capacities with copper. This underscores the high selectivity of the sensing platform. Both theoretical simulations and experimental results (including UV-vis spectra, fluorescence, and EPR) indicate that the amino acids may engage in copper center coordination, thereby impeding O2 access to copper─a pivotal aspect of the oxidase catalysis. This sensing platform, characteristic of its swift response, simple fabrication, and exceptional sensitivity and selectivity, can also be applied to detect other biological analytes such as nucleotides. It holds potential for use in environmental and biochemical analyses.


Asunto(s)
Colorimetría , Cobre , Colorimetría/métodos , Cobre/química , Histidina/química , Catálisis , Oxidorreductasas
13.
Eur Phys J E Soft Matter ; 46(9): 82, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707751

RESUMEN

End-tethered polyelectrolytes are widely used to modify substrate properties, particularly for lubrication or wetting. External stimuli, such as pH, salt concentration, or an electric field, can induce profound structural responses in weak polyelectrolyte brushes, which can be utilized to further tune substrate properties. We study the structure and electroresponsiveness of weak polyacid brushes using an inhomogeneous theory that incorporates both electrostatic and chain connectivity correlations at the Debye-Hückel level. Our calculation shows that a weak polyacid brush swells under the application of a negative applied potential, in agreement with recent experimental observation. We rationalize this behavior using a scaling argument that accounts for the effect of the surface charge. We also show that the swelling behavior has a direct influence on the differential capacitance, which can be modulated by the solvent quality, pH, and salt concentration.

14.
Materials (Basel) ; 16(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37629857

RESUMEN

To investigate the effect of laser shock peening parameters on the corrosion resistance of an E690 high-strength steel cladding layer, NVE690 high-strength steel powder was selected for testing at various power densities of pulse lasers. The surface roughness and residual stress of the treated samples were measured, and the microstructure morphology of the sample surface was observed. The electrochemical corrosion tests were conducted with an electrochemical workstation to measure the electrometer polarization, obtain the impedance curve, and observe the electrochemical corrosion. As the laser power density increased, the surface grains of the E690 high-strength steel cladding layer continued to refine until nanocrystals formed, and the residual compressive stress on the surface increased. The residual compressive stress on the surface rendered the passivation film stable and dense; furthermore, the refinement of surface grains inhibited the initiation and propagation of microcracks. The positive shift of the corrosion potential increased from -1.004 to -0.771 V, the corrosion current density decreased from 114.5 to 5.41 µA/cm2, the radius of the impedance spectrum curve increased, and the peeling pits, as well as corrosion micropores on the surface, gradually became no longer evident after electrochemical corrosion. After laser shock treatment, the corrosion resistance of the cladding layer sample was substantially improved.

15.
ACS Macro Lett ; 12(7): 980-985, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37399493

RESUMEN

Large cell self-consistent field theory (SCFT) solutions for a neat, micelle-forming diblock copolymer melt, initialized using the structure of a Lennard-Jones fluid, reveal the existence of a vast number of liquid-like states, with free energies of order 10-3 kBT per chain higher than the body-centered cubic (bcc) state near the order-disorder transition (ODT). Computation of the structure factor for these liquids at temperatures below the ODT indicates that their intermicellar distance is slightly swollen compared to bcc. In addition to providing a mean-field picture of the disordered micellar state, the number of liquid-like states and their near-degeneracy with the equilibrium bcc morphology suggest that self-assembly of micelle-forming diblock copolymers navigates a rugged free energy landscape with many local minima. This picture provides a basis for the anomalously slow ordering kinetics of particle-forming diblock copolymer melts observed in experiments.

16.
J Mater Chem B ; 11(30): 7117-7125, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37409588

RESUMEN

The de novo design of artificial biocatalysts with enzyme-like active sites and catalytic functions has long been an attractive yet challenging goal. In this study, we present a nucleotide-Cu2+ complex, synthesized through a one-pot approach, capable of catalyzing ortho-hydroxylation reactions resembling those of minimalist monooxygenases. Both experimental and theoretical findings demonstrate that the catalyst, in which Cu2+ coordinates with both the nucleobase and phosphate moieties, forms a ternary-complex intermediate with H2O2 and tyramine substrates through multiple weak interactions. The subsequent electron transfer and hydrogen (or proton) transfer steps lead to the ortho-hydroxylation of tyramine, where the single copper center exhibits a similar function to natural dicopper sites. Moreover, Cu2+ bound to nucleotides or oligonucleotides exhibits thermophilic catalytic properties within the temperature range of 25 °C to 75 °C, while native enzymes are fully deactivated above 35 °C. This study may provide insights for the future design of oxidase-mimetic catalysts and serve as a guide for the design of primitive metallocentre-dependent enzymes.


Asunto(s)
Cobre , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Cobre/química , Oxidación-Reducción , Nucleótidos/metabolismo , Peróxido de Hidrógeno , Tiramina
17.
J Phys Chem B ; 127(30): 6825-6832, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37491824

RESUMEN

Biomolecular assembly typically exhibits enthalpy-entropy compensation (EEC) behavior whose molecular origin remains a long-standing puzzle. While water restructuring is believed to play an important role in EEC, its contribution to the entropy and enthalpy changes, and how these changes relate to EEC, remains poorly understood. Here, we show that water reorganization entropy/enthalpy can be obtained by exploiting the temperature dependence in effective, implicit-solvent potentials. We find that the different temperature dependencies in the hydrophobic interaction, rooted in water reorganization, result in substantial variations in the entropy/enthalpy change, which are responsible for EEC. For lower-critical-solution-temperature association, water reorganization entropy dominates the free-energy change at the expense of enthalpy; for upper-critical-solution-temperature association, water reorganization enthalpy drives the process at the cost of entropy. Other effects, such as electrostatic interaction and conformation change of the macromolecules, contribute much less to the variations in entropy/enthalpy.


Asunto(s)
Agua , Entropía , Solventes/química , Agua/química , Termodinámica , Temperatura
18.
Nat Commun ; 14(1): 4040, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419896

RESUMEN

Enzymes fold into unique three-dimensional structures to distribute their reactive amino acid residues, but environmental changes can disrupt their essential folding and lead to irreversible activity loss. The de novo synthesis of enzyme-like active sites is challenging due to the difficulty of replicating the spatial arrangement of functional groups. Here, we present a supramolecular mimetic enzyme formed by self-assembling nucleotides with fluorenylmethyloxycarbonyl (Fmoc)-modified amino acids and copper. This catalyst exhibits catalytic functions akin those of copper cluster-dependent oxidases, and catalytic performance surpasses to date-reported artificial complexes. Our experimental and theoretical results reveal the crucial role of periodic arrangement of amino acid components, enabled by fluorenyl stacking, in forming oxidase-mimetic copper clusters. Nucleotides provide coordination atoms that enhance copper activity by facilitating the formation of a copper-peroxide intermediate. The catalyst shows thermophilic behavior, remaining active up to 95 °C in an aqueous environment. These findings may aid the design of advanced biomimetic catalysts and offer insights into primordial redox enzymes.


Asunto(s)
Cobre , Metaloproteínas , Cobre/química , Biomimética , Oxidorreductasas , Aminoácidos , Nucleótidos
19.
J Phys Chem B ; 127(19): 4328-4337, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37159929

RESUMEN

Implicit solvent models that reduce solvent degrees of freedom into effective interaction potentials are widely used in the study of soft materials and biophysical systems. For electrolyte and polyelectrolyte solutions, coarse-graining the solvent degrees of freedom into an effective dielectric constant embeds entropic contributions into the temperature dependence of the dielectric constant. Properly accounting for this electrostatic entropy is essential to discern whether a free energy change is enthalpically or entropically driven. We address the entropic origin of electrostatic interactions in a dipolar solvent and provide a clarified physical picture of the solvent dielectric response. We calculate the potential of mean force (PMF) between two oppositely charged ions in a dipolar solvent using molecular dynamics and dipolar self-consistent field theory. We find with both techniques that the PMF is dominated by the entropy gain from the dipole release, owing to the diminished orientational polarization of the solvent. We also find that the relative contribution of the entropy to the free energy change is nonmonotonic with temperature. We expect that our conclusions are applicable to a broad range of problems involving ionic interactions in polar solvents.

20.
ACS Nano ; 17(14): 13000-13016, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37093564

RESUMEN

Enzymes fold into three-dimensional structures to distribute amino acid residues for catalysis, which inspired the supramolecular approach to construct enzyme-mimicking catalysts. A key concern in the development of supramolecular strategies is the ability to confine and orient functional groups to form enzyme-like active sites in artificial materials. This review introduces the design principles and construction of supramolecular nanomaterials exhibiting catalytic functions of heme-dependent enzymes, a large class of metalloproteins, which rely on a heme cofactor and spatially configured residues to catalyze diverse reactions via a complex multistep mechanism. We focus on the structure-activity relationship of the supramolecular catalysts and their applications in materials synthesis/degradation, biosensing, and therapeutics. The heme-free catalysts that catalyze reactions achieved by hemeproteins are also briefly discussed. Towards the end of the review, we discuss the outlook on the challenges related to catalyst design and future prospective, including the development of structure-resolving techniques and design concepts, with the aim of creating enzyme-mimicking materials that possess catalytic power rivaling that of natural enzymes..


Asunto(s)
Nanoestructuras , Catálisis , Nanoestructuras/química , Dominio Catalítico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA