Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(20): 205701, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34110204

RESUMEN

A quantum spin Hall insulating state that arises from spontaneous symmetry breaking has remarkable properties: skyrmion textures of the SO(3) order parameter carry charge 2e. Doping this state of matter opens a new route to superconductivity via the condensation of skyrmions. We define a model amenable to large-scale negative sign free quantum Monte Carlo simulations that allows us to study this transition. Our results support a direct and continuous doping-induced transition between the quantum spin Hall insulator and an s-wave superconductor. We can resolve dopings away from half-filling down to δ=0.0017. Such routes to superconductivity have been put forward in the realm of twisted bilayer graphene.

2.
Phys Rev Lett ; 126(4): 045701, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33576684

RESUMEN

We use the half-filled zeroth Landau level in graphene as a regularization scheme to study the physics of the SO(5) nonlinear sigma model subject to a Wess-Zumino-Witten topological term in 2+1 dimensions. As shown by Ippoliti et al. [Phys. Rev. B 98, 235108 (2019)PRBMDO2469-995010.1103/PhysRevB.98.235108], this approach allows for negative sign free auxiliary field quantum Monte Carlo simulations. The model has a single free parameter U_{0} that monitors the stiffness. Within the parameter range accessible to negative sign free simulations, we observe an ordered phase in the large U_{0} or stiff limit. Remarkably, upon reducing U_{0} the magnetization drops substantially, and the correlation length exceeds our biggest system sizes, accommodating 100 flux quanta. The implications of our results for deconfined quantum phase transitions between valence bond solids and antiferromagnets are discussed.

3.
Nat Commun ; 10(1): 2658, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201300

RESUMEN

The discovery of quantum spin-Hall (QSH) insulators has brought topology to the forefront of condensed matter physics. While a QSH state from spin-orbit coupling can be fully understood in terms of band theory, fascinating many-body effects are expected if it instead results from spontaneous symmetry breaking. Here, we introduce a model of interacting Dirac fermions where a QSH state is dynamically generated. Our tuning parameter further allows us to destabilize the QSH state in favour of a superconducting state through proliferation of charge-2e topological defects. This route to superconductivity put forward by Grover and Senthil is an instance of a deconfined quantum critical point (DQCP). Our model offers the possibility to study DQCPs without a second length scale associated with the reduced symmetry between field theory and lattice realization and, by construction, is amenable to large-scale fermion quantum Monte Carlo simulations.

4.
Phys Rev E ; 96(4-1): 042131, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29347588

RESUMEN

We introduce a quantum Monte Carlo method at finite temperature for interacting fermionic models in the canonical ensemble, where the conservation of the particle number is enforced. Although general thermodynamic arguments ensure the equivalence of the canonical and the grand-canonical ensembles in the thermodynamic limit, their approach to the infinite-volume limit is distinctively different. Observables computed in the canonical ensemble generically display a finite-size correction proportional to the inverse volume, whereas in the grand-canonical ensemble the approach is exponential in the ratio of the linear size over the correlation length. We verify these predictions by quantum Monte Carlo simulations of the Hubbard model in one and two dimensions in the grand-canonical and the canonical ensemble. We prove an exact formula for the finite-size part of the free energy density, energy density and other observables in the canonical ensemble and relate this correction to a susceptibility computed in the corresponding grand-canonical ensemble. This result is confirmed by an exact computation of the one-dimensional classical Ising model in the canonical ensemble, which for classical models corresponds to the so-called fixed-magnetization ensemble. Our method is useful for simulating finite systems which are not coupled to a particle bath, such as in nuclear or cold atom physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...