Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
J Ethnopharmacol ; 337(Pt 1): 118794, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244178

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Processed Buthus martensii Karsch (BmK) scorpion, also known as Quan-Xie, is a traditional Chinese medicine that is clinically used for the treatment of NAFLD due to its Tong-Luo-San-Jie effects. Our previous study showed that aqueous extract of processed BmK scorpion venom gland (pVg AE) inhibited macrophage inflammation by targeting Kv1.3 and identified the thermostable peptide BmKK2 as a potent Kv1.3 blocker. AIM OF THE STUDY: This study examined the therapeutic effects of processed BmK scorpions on NASH, specifically focusing on the involvement of their anti-inflammatory effects mediated by macrophage-expressed Kv1.3 in NASH. MATERIALS AND METHODS: In the present study, the anti-NASH effects of pVg AE were evaluated in high-fat diet (HFD)-induced NASH mouse models. Additionally, the in vitro anti-inflammatory mechanisms of pVg AE and BmKK2 were assessed using a palmitic acid (PA)-induced mouse bone marrow-derived macrophages (BMDMs) inflammation model. Protein and cytokine expression related to the Kv1.3-NF-κB pathway was analyzed by real-time PCR, immunoblotting and ELISA. The effect of pVg AE and BmKK2 on potassium channels was detected by whole-cell voltage-clamp recordings on transfected HEK293T cells or mouse BMDMs. Calcium ion imaging was used to evaluate intracellular calcium signaling. Furthermore, the study utilized Kv1.3 siRNA and a BMDMs and hepatocytes co-culture model to investigate the specific role of Kv1.3 in mediating the anti-NASH effects of pVg AE and BmKK2. RESULTS: Lipid accumulation upregulated Kv1.3 expression in macrophages in vivo and in vitro. However, pVg AE significantly reduced Kv1.3 expression and Kv1.3-positive macrophage infiltration. Treatment with pVg AE improved obesity, insulin resistance (IR), hepatic steatosis (HS), inflammation, and fibrosis in HFD-fed mice. Mechanistically, pVg AE and BmKK2 inhibited macrophage inflammation by targeting Kv1.3, which reduced PA-induced intracellular Ca2+ levels, resulting in the inhibition of the NF-κB pathway and TNFα release. CONCLUSIONS: This study demonstrates that Kv1.3-mediated macrophage inflammation is involved in the pathogenesis and treatment of NASH. pVg AE effectively alleviates metabolic stress-induced NASH by inhibiting this inflammation.

2.
Transl Cancer Res ; 13(8): 4341-4353, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39262468

RESUMEN

Background: Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the oral and maxillofacial regions. Patients with OSCC exhibit a poor response to conventional chemoradiotherapies, which are associated with severe side effects. Therefore, it is essential to identify an effective therapeutic method to treat patients with OSCC. An anti-tumor compound, Agkistrodon acutus venom component I (AAVC-I), purified from Agkistrodon acutus venom, has demonstrated anticancer activity both in vitro and in vivo. However, the mechanism of AAVC-I's anticancer activity in cancer cells has yet to be established. This study aimed to investigate the mechanism of AAVC-I-induced apoptosis in HSC-3 OSCC cells and explore its regulatory effect on oxidative stress. Methods: Survival rates of human OSCC cell HSC-3 were detected by Cell Counting Kit-8 (CCK-8). The reactive oxygen species (ROS) level was analyzed by flow cytometry and fluorescence microscopy. The mitochondrial membrane potential was analyzed by cytometry and fluorescent microplate reader. Apoptosis of HSC-3 cells was analyzed using flow cytometry. The oxidative stress level was evaluated using glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) kits. In addition, the target proteins were analyzed by western blot. Results: AAVC-I reduced HSC-3 cells' survival rates in a dose-dependent manner with a 50% inhibiting concentration (IC50) of 8.86 µg/mL. It induced apoptosis of HSC-3 cells and the expression of cleaved caspase-3, cleaved caspase-9, and Cyt-c increased significantly, whereas the expression level of Bcl-2 decreased in AAVC-I-treated HSC-3 cells. Thus, AAVC-I caused apoptosis of HSC-3 via the activation of the intrinsic apoptotic pathway. In addition, AAVC-I reduced the mitochondrial membrane potential in HSC-3, enhanced intracellular ROS, and increased intracellular oxidative stress levels in comparison to that of untreated control cells. Furthermore, AAVC-I increased the expression of Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) levels. Conclusions: These findings demonstrate the inhibitory effects and associated mechanisms of AAVC-I on the HSC-3 OSCC cell line. This insight could be valuable for investigating AAVC-I as a potential therapeutic option for patients with OSCC.

3.
Micromachines (Basel) ; 15(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39203601

RESUMEN

GaN HEMT devices are sensitive to the single event effect (SEE) caused by heavy ions, and their reliability affects the safe use of space equipment. In this work, a Ge ion (LET = 37 MeV·cm2/mg) and Bi ion (LET = 98 MeV·cm2/mg) were used to irradiate Cascode GaN power devices by heavy ion accelerator experimental device. The differences of SEE under three conditions: pre-applied electrical stress, different LET values, and gate voltages are studied, and the related damage mechanism is discussed. The experimental results show that the pre-application of electrical stress before radiation leads to an electron de-trapping effect, generating defects within the GaN device. These defects will assist in charge collection so that the drain leakage current of the device will be enhanced. The higher the LET value, the more electron-hole pairs are ionized. Therefore, the charge collected by the drain increases, and the burn-out voltage advances. In the off state, the more negative the gate voltage, the higher the drain voltage of the GaN HEMT device, and the more serious the back-channel effect. This study provides an important theoretical basis for the reliability of GaN power devices in radiation environments.

4.
Angew Chem Int Ed Engl ; 63(44): e202411474, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007514

RESUMEN

Owing to its prominent π-delocalization and stability, vinylene linkage holds great merits in the construction of covalent organic frameworks (COFs) with promising semiconducting properties. However, carbon-carbon double bond formation reaction always exhibits relatively low reversibility, unfavorable for the formation of high crystalline frameworks through self-error correction and assembling processes. In this work, we report a heteroatom-tuned strategy to build up a series of two-dimensional (2D) vinylene-linked COFs by Knoevenagel condensation of an electron-deficient methylthiazolyl-based monomer with different triformyl substituted (hetero-)aromatic derivatives. The resulting COFs show high-quality periodic mesoporous structures with high surface areas. Embedding heteroatoms into the backbones enables significantly improving their crystallinity, and finely tailoring their semiconducting structures. Upon visible light stimulation, one of the as-prepared COFs with donor-π-acceptor structure could deliver a nearly seven-fold increase in the catalytic activity of hydrogen generation as compared with the other two. Meanwhile, in combination with high crystallinity and the matched conduction band energy level, such kind of COFs can be able to selectively generate singlet oxygen and superoxide radicals in a high ratio of up to 30 : 1, allowing for catalyzing aerobic thioanisole oxidation in distinctly tunable activities through the substituent electronic effect of the substrates.

5.
Plant Physiol ; 196(2): 1284-1297, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991561

RESUMEN

Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of 2 hybrids, an intraspecific hybrid between 2 maize (Zea mays ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Z. mays ssp. parviglumis), utilizing a combination of PacBio High Fidelity sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a biparental genome graph, the haplotypic assemblies can facilitate downstream short-read-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.


Asunto(s)
Genoma de Planta , Hibridación Genética , Zea mays , Genoma de Planta/genética , Zea mays/genética , Vigor Híbrido/genética , Fitomejoramiento/métodos
6.
Curr Biol ; 34(14): 3055-3063.e5, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38925116

RESUMEN

Foraging behavior frequently plays a major role in driving the geographic distribution of animals. Buzzing to extract protein-rich pollen from flowers is a key foraging behavior used by bee species across at least 83 genera (these genera comprise ∼58% of all bee species). Although buzzing is widely recognized to affect the ecology and evolution of bees and flowering plants (e.g., buzz-pollinated flowers), global patterns and drivers of buzzing bee biogeography remain unexplored. Here, we investigate the global species distribution patterns within each bee family and how patterns and drivers differ with respect to buzzing bee species. We found that both distributional patterns and drivers of richness typically differed for buzzing species compared with hotspots for all bee species and when grouped by family. A major predictor of the distribution, but not species richness overall for buzzing members of four of the five major bee families included in analyses (Andrenidae, Halictidae, Colletidae, and to a lesser extent, Apidae), was the richness of poricidal flowering plant species, which depend on buzzing bees for pollination. Because poricidal plant richness was highest in areas with low wind and high aridity, we discuss how global hotspots of buzzing bee biodiversity are likely influenced by both biogeographic factors and plant host availability. Although we explored global patterns with state-level data, higher-resolution work is needed to explore local-level drivers of patterns. From a global perspective, buzz-pollinated plants clearly play a greater role in the ecology and evolution of buzzing bees than previously predicted.


Asunto(s)
Polinización , Animales , Abejas/fisiología , Distribución Animal , Magnoliopsida/fisiología , Flores , Biodiversidad
7.
Pharmacol Res ; 206: 107261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917912

RESUMEN

The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.


Asunto(s)
Envejecimiento , Enfermedades Renales , Sirtuina 3 , Humanos , Sirtuina 3/metabolismo , Animales , Envejecimiento/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/tratamiento farmacológico , Riñón/metabolismo , Mitocondrias/metabolismo
8.
Fundam Res ; 4(1): 3-7, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933842

RESUMEN

This paper gives a definition of the Industrial Internet and expounds on the academic connotation of the future Industrial Internet. From this foundation, we outline the development and current status of the Industrial Internet in China and globally. Moreover, we detail the avant-garde paradigms encompassed within the National Natural Science Foundation of China (NSFC)'s "Future Industrial Internet Fundamental Theory and Key Technologies" research plan and its corresponding management strategies. This research initiative endeavors to enhance interdisciplinary collaborations, aiming for a synergistic alignment of industry, academia, research, and practical implementations. The primary focus of the research plan is on the pivotal scientific challenges inherent to the future industrial internet. It is poised to traverse the "first mile", encompassing foundational research and pioneering innovations specific to the industrial internet, and seamlessly bridges to the "last mile", ensuring the effective commercialization of scientific and technological breakthroughs into tangible industrial market applications. The anticipated contributions from this initiative are projected to solidify both the theoretical and practical scaffolding essential for the cultivation of a globally competitive industrial internet infrastructure in China.

9.
Adv Mater ; 36(33): e2403584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897229

RESUMEN

Despite multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters with small full-width at half maximum are attractive for wide color-gamut display and eye-protection lighting applications, their inefficient reverse intersystem crossing (RISC) process and long exciton lifetime induce serious efficiency roll-off, which significantly limits their development. Herein, a novel device concept of building highly efficient tricomponent exciplex with multiple RISC channels is proposed to realize reduced exciton quenching and enhanced upconversion of nonradiative triplet excitons, and subsequently used as a host for high-performance MR-TADF organic light-emitting diodes (OLEDs). Compared with traditional binary exciplex, the tricomponent exciplex exhibits obviously improved photoluminescence quantum yield, emitting dipole orientation and RISC rate constant, and a record-breaking external quantum efficiency (EQE) of 30.4% is achieved for tricomponent exciplex p-PhBCzPh: PO-T2T: DspiroAc-TRZ (50: 20: 30) based OLED. Remarkably, maximum EQEs of 36.2% and 40.3% and ultralow efficiency roll-off with EQEs of 26.1% and 30.0% at 1000 cd m-2 are respectively achieved for its sky-blue and pure-green MR-TADF doped OLEDs. Additionally, the blue emission unit hosted by tricomponent exciplex is combined with an orange-red TADF emission unit to achieve a double-emission-layer blue-hazard-free warm white OLED with an EQEmax of 30.3% and stable electroluminescence spectra over a wide brightness range.

10.
Angew Chem Int Ed Engl ; 63(34): e202402446, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38859748

RESUMEN

In this study, we successfully developed two novel vinylene-linked covalent organic frameworks (COFs) using 2-connected 3,6-dimethylpyridazine through Knoevenagel condensation. These COFs featured finely tailored micro-/nano-scale pore sizes, high surface areas and stable non-polar vinylene linkages. Finely resolved powder X-ray diffraction patterns demonstrated highly crystalline structures with a hexagonal lattice in the AA layer stacking. The resulting one-dimensional channels possess strong hydrogen-bond accepting sites arising from the decorated cis-azo/azine units with two pairs of fully exposed lone pair electrons, endowing the as-prepared COFs with exceptional water absorption properties. The g-DZPH-COF exhibited successive steep water uptake steps starting from low relative pressures (P/PSTA=0.1), with the remarkable water uptake capacity of 0.26 g/g at P/PSTA=0.2 (25 °C), which is the optimal value recorded among the reported COFs. Dynamic vapour sorption measurements revealed the fast kinetics of these COFs, even in the cluster formation process. Water uptake and release cycling tests demonstrated their outstanding hydrolytic stability, durability, and adsorption-desorption retention ability.

12.
Ecol Evol ; 14(5): e11364, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698929

RESUMEN

Plot-scale experiments indicate that functional diversity (FD) plays a pivotal role in sustaining ecosystem functions such as net primary productivity (NPP). However, the relationships between functional diversity and NPP across larger scale under varying climatic conditions are sparsely studied, despite its significance for understanding forest-atmosphere interactions and informing policy development. Hence, we examine the relationships of community-weighted mean (CWM) and functional dispersion (FDis) of woody plant traits on NPP across China and if such relationships are modulated by climatic conditions at the national scale. Using comprehensive datasets of distribution, functional traits, and productivity for 9120 Chinese woody plant species, we evaluated the distribution pattern of community-weighted mean and functional dispersion (including three orthogonal trait indicators: plant size, leaf morphology, and flower duration) and its relationships with NPP. Finally, we tested the effects of climatic conditions on community-weighted mean/functional dispersion-NPP relationships. We first found overall functional diversity-NPP relationships, but also that the magnitude of these relationships was sensitive to climate, with plant size community-weighted mean promoting NPP in warm regions and plant size functional dispersion promoting NPP in wet regions. Second, warm and wet conditions indirectly increased NPP by its positive effects on community-weighted mean or functional dispersion, particularly through mean plant size and leaf morphology. Our study provides comprehensive evidence for the relationships between functional diversity and NPP under varying climates at a large scale. Importantly, our results indicate a broadening significance of multidimensional plant functional traits for woody vegetation NPP in response to rising temperatures and wetter climates. Restoration, reforestation actions and natural capital accounting need to carefully consider not only community-weighted mean and functional dispersion but also their interactions with climate, to predict how functional diversity may promote ecosystem functioning under future climatic conditions.

13.
Appl Opt ; 63(9): 2241-2247, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38568578

RESUMEN

For conventional refractive lenses, chromatic aberration inevitably occurs due to the refractive index variation of the lens material with the incident wavelength, leading to axial aberrations and lower imaging system quality. Achromatic metalenses have demonstrated a great capability to solve this problem and been extensively investigated. However, the metalens achromatic method involves construction of a unit structure satisfying a phase distribution greater than 0-2π or phase compensation. Although this design method can obtain a good achromatic effect, finding a unit that satisfies a linear distribution during design is difficult. In this paper, we use subregion discrete wavelength modulation to achieve broadband achromatism. The total number of structural units in each region is optimized for different incident wavelengths, and the internal and external ring unit structures are also optimized. This achromatic metalens exhibits a large aperture and a high numerical aperture in the 4.2-4.7 µm mid-infrared band (NA = 0.83). Our research has strong potential and application prospects in ultracompact imaging and laser beam shaping.

14.
Vaccines (Basel) ; 12(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675793

RESUMEN

OBJECTIVE: This study aimed to provide clinical evidence for lineage replacement and genetic changes of High-Risk Human Papillomavirus (HR-HPV) during the period of vaccine coverage and characterize those changes in eastern China. METHODS: This study consisted of two stages. A total of 90,583 patients visiting the Obstetrics and Gynecology Hospital of Fudan University from March 2018 to March 2022 were included in the HPV typing analysis. Another 1076 patients who tested positive for HPV31, 33, 52, or 58 from November 2020 to August 2023 were further included for HPV sequencing. Vaccination records, especially vaccine types and the third dose administration time, medical history, and cervical cytology samples were collected. Viral DNA sequencing was then conducted, followed by phylogenetic analysis and sequence alignment. RESULTS: The overall proportion of HPV31 and 58 infections increased by 1.23% and 0.51%, respectively, while infection by HPV33 and 52 decreased by 0.42% and 1.43%, respectively, within the four-year vaccination coverage period. The proportion of HPV31 C lineage infections showed a 22.17% increase in the vaccinated group, while that of the HPV58 A2 sublineage showed a 12.96% increase. T267A and T274N in the F-G loop of HPV31 L1 protein, L150F in the D-E loop, and T375N in the H-I loop of HPV58 L1 protein were identified as high-frequency escape-related mutations. CONCLUSIONS: Differences in epidemic lineage changes and dominant mutation accumulation may result in a proportional difference in trends of HPV infection. New epidemic lineages and high-frequency escape-related mutations should be noted during the vaccine coverage period, and regional epidemic variants should be considered during the development of next-generation vaccines.

15.
Transl Res ; 272: 162-176, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38494125

RESUMEN

Hepatic ischemia reperfusion (I/R) injury is a common clinical complication. X-box binding protein 1 (XBP1), as a critical regulator of the endoplasmic reticulum stress, has been implicated in a variety of diseases. In this study, we aimed to investigate the effects and the underlying mechanism of XBP1 in the progression of hepatic I/R injury. Hepatocyte-specific XBP1 knockout mice, multiple viral delivery systems and specific pharmacological inhibitors were applied in vivo in a partial hepatic I/R injury mouse model and in vitro in a cell model of hypoxia-reoxygenation (H/R) injury. Mitophagy and autophagic flux were evaluated and fluorescence resonance energy transfer (FRET) as well as immunoprecipitation were performed. The results demonstrated that reperfusion for 6 h represented a critical timepoint in hepatic I/R injury and resulted in significant intracellular mitochondrial dysfunction; led to the breakdown of hepatocytes accompanied by the highest expression levels of XBP1. Hepatocyte-specific XBP1 knockout alleviated hepatic I/R injury via enhanced mitophagy, as demonstrated by the reduction in hepatocellular damage/necrosis and increased expression of mitophagy markers. Mechanistically, XBP1 interacted with FoxO1 directly and catalyzed the ubiquitination of FoxO1 for proteasomal degradation. Targeting XBP1 by genetic or pharmacological techniques potentiated the protein levels of FoxO1, further promoting the activity of the PINK1/Parkin signaling pathway, thus augmenting mitophagy and exerting hepatoprotective effects upon I/R injury. In conclusion, the inhibition of XBP1 potentiated FoxO1-mediated mitophagy in hepatic I/R injury. Specific genetic and pharmacological treatment targeting XBP1 in the perioperative 6 h prior to reperfusion exerted beneficial effects, thus providing a novel therapeutic approach.


Asunto(s)
Proteína Forkhead Box O1 , Ratones Noqueados , Mitofagia , Daño por Reperfusión , Proteína 1 de Unión a la X-Box , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Mitofagia/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Humanos
16.
Front Plant Sci ; 15: 1362149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516660

RESUMEN

The improvement of nutrients in soil is essential for using deserts and decertified ecosystems and promoting sustainable agriculture. Grapevines are suitable crops for desert soils as they can adapt to harsh environments and effectively impact soil nutrients; however, the mechanisms underlying this remain unclear. This study explored the impact of the different duration(3, 6, and 10 years) of grape cultivation on soil organic carbon, physicochemical properties, enzyme activities, microbial communities, and carbon cycle pathways in both rhizosphere and bulk soils. Partial least squares path modeling was used to further reveal how these factors contributed to soil nutrient improvement. Our findings indicate that after long-term grape cultivation six years, soil organic carbon, total nitrogen, total phosphorus, microbial biomass carbon and nitrogen, and enzyme activities has significantly increased in both rhizosphere and bulk soils but microbial diversity decreased in bulk soil. According to the microbial community assembly analysis, we found that stochastic processes, particularly homogenizing dispersal, were dominant in both soils. Bacteria are more sensitive to environmental changes than fungi. In the bulk soil, long-term grape cultivation leads to a reduction in ecological niches and an increase in salinity, resulting in a decrease in soil microbial diversity. Soil enzymes play an important role in increasing soil organic matter in bulk soil by decomposing plant litters, while fungi play an important role in increasing soil organic matter in the rhizosphere, possibly by decomposing fine roots and producing mycelia. Our findings enhance understanding of the mechanisms of soil organic carbon improvement under long-term grape cultivation and suggest that grapes are suitable crops for restoring desert ecosystems.

17.
Molecules ; 29(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338428

RESUMEN

In order to efficiently extract ß-glucan from highland barley (HBG) and study its structural characterization and antioxidant activity, ultrasonic-microwave-assisted extraction (UME) was optimized by the response surface method (RSM). Under the optimal extraction conditions of 25.05 mL/g liquid-solid ratio, 20 min ultrasonic time, and 480 W microwave intensity, the DPPH radical scavenging activity of HBG reached 25.67%. Two polysaccharide fractions were purified from HBG, namely HBG-1 and HBG-2. Structural characterization indicated that HBG-1 and HBG-2 had similar functional groups, glycosidic linkages, and linear and complex chain conformation. HBG-1 was mainly composed of glucose (98.97%), while HBG-2 primarily consisted of arabinose (38.23%), galactose (22.01%), and xylose (31.60%). The molecular weight of HBG-1 was much smaller than that of HBG-2. Both HBG-1 and HBG-2 exhibited concentration-dependent antioxidant activity, and HBG-1 was more active. This study provided insights into the efficient extraction of HBG and further investigated the structure and antioxidant activities of purified components HBG-1 and HBG-2. Meanwhile, the results of this study imply that HBG has the potential to be an antioxidant in foods and cosmetics.


Asunto(s)
Hordeum , beta-Glucanos , Antioxidantes/farmacología , Antioxidantes/química , Ultrasonido , Microondas , beta-Glucanos/farmacología , Polisacáridos/química
18.
Heliyon ; 10(2): e24499, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298727

RESUMEN

The study aimed to explore the relationship between the expression of cytochrome P450 family 27 subfamily B member 1 (CYP27B1), vitamin D, and impaired T cell subsets in recurrent spontaneous miscarriage (RSM). A Total of 779 healthy women of childbearing age and 1031 women with a history of RSM were involved in this study. The results of flow cytometry showed that the proportion of Tregs was higher in healthy women than in the women with RSM. For cytokines, the levels of interleukin-17 (IL-17) and interferon-gamma (IFN-γ) were significantly higher in RSM patients than in healthy women, while IL-10 was notably lower in RSM patients. Furthermore, compared to healthy individuals, RSM patients had lower levels of serum 25(OH)D detected by chemiluminescence. The frequency of Tregs was negatively correlated with 25(OH)D. Specifically, for every 10 ng/ml increase in 25(OH)D, the percentage of Tregs increased by 0.58 as calculated. IL-17 and IFN-γ were inversely correlated with 25(OH)D, while the serum interleukin-10 (IL-10) level was positively correlated with 25(OH)D. CYP27B1 was found to be expressed in both cytotrophoblast and extracellular villi trophoblast cells. However, reduced expression of CYP27B1 was observed in the placenta with RSM. Notably, the level of 25(OH)D increased in the supernatant of CYP27B1 knockdown BeWo compared to normal cells, while human chorionic gonadotropin (hCG) was significantly reduced. The hCG secretion of CYP27B1 KO BeWo cells was partially restored after 1,25(OH)2D3 supplementation. In addition, 1,25(OH)2D3 treatment could induce more CD4+ T cells to convert to Foxp3+iTreg, which in turn inhibited the secretion of IL-17, IFN-γ. In summary, this research unveiled a connection between reduced CYP27B1 and vitamin D deficiency in RSM. Our study underscores the potential benefits of vitamin D treatment supplementation in the context of RSM. However, it is important to note that further research is imperative to validate these observations.

19.
Ecol Lett ; 27(1): e14364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225803

RESUMEN

Plant-soil feedback (PSF) is an important mechanism determining plant community dynamics and structure. Understanding the geographic patterns and drivers of PSF is essential for understanding the mechanisms underlying geographic plant diversity patterns. We compiled a large dataset containing 5969 observations of PSF from 202 studies to demonstrate the global patterns and drivers of PSF for woody and non-woody species. Overall, PSF was negative on average and was influenced by plant attributes and environmental settings. Woody species PSFs did not vary with latitude, but non-woody PSFs were more negative at higher latitudes. PSF was consistently more positive with increasing aridity for both woody and non-woody species, likely due to increased mutualistic microbes relative to soil-borne pathogens. These findings were consistent between field and greenhouse experiments, suggesting that PSF variation can be driven by soil legacies from climates. Our findings call for caution to use PSF as an explanation of the latitudinal diversity gradient and highlight that aridity can influence plant community dynamics and structure across broad scales through mediating plant-soil microbe interactions.


Asunto(s)
Plantas , Suelo , Microbiología del Suelo , Simbiosis , Retroalimentación
20.
Sci China Life Sci ; 67(4): 817-828, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217639

RESUMEN

The Convention on Biological Diversity seeks to conserve at least 30% of global land and water areas by 2030, which is a challenge but also an opportunity to better preserve biodiversity, including flowering plants (angiosperms). Herein, we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species. Using this database, we constructed biodiversity-environment models to predict global patterns of taxonomic, phylogenetic, and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets. We further evaluated the current protection status of the biodiversity centers of these diversity facets. Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities. Idiosyncratic centers of functional diversity, particularly of herbaceous species, were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets. Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms (woody vs. herbaceous), thus providing directions for guiding the future conservation of global plant diversity.


Asunto(s)
Magnoliopsida , Filogenia , Biodiversidad , Plantas , Ecosistema , Conservación de los Recursos Naturales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...