Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Carcinog ; 63(3): 371-383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37975495

RESUMEN

Long noncoding RNAs (lncRNAs) are crucial regulators of tumor-initiating cells (TICs) and hold particular importance in triple negative breast cancer (TNBC). Yet, the precise mechanisms by which TIC-associated lncRNAs influence TNBC remain unclear. Our research utilized The Cancer Genome Atlas Breast Cancer (BC) data set to identify prognostic lncRNAs. We then conducted extensive assays to explore their impact on the tumor-initiating phenotype of TNBC cells and the underlying mechanisms. Notably, we found that low expression of lncRNA SEMA3B-AS1 correlated with unfavorable survival in BC patients. SEMA3B-AS1 was also downregulated in TNBC and linked to advanced tumor stage. Functional experiments confirmed its role as a TIC-suppressing lncRNA, curtailing mammosphere formation, ALDH + TIC cell proportion, and impairing clonogenicity, migration, and invasion. Mechanistic insights unveiled SEMA3B-AS1's nuclear localization and interaction with MLL4 (mixed-lineage leukemia 4), triggering H3K4 methylation-associated transcript activation and thus elevating the expression of SEMA3B, a recognized tumor suppressor gene. Our findings emphasize SEMA3B-AS1's significance as a TNBC-suppressing lncRNA that modulates TIC behavior. This study advances our comprehension of lncRNA's role in TNBC progression, advocating for their potential as therapeutic targets in this aggressive BC subtype.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Semaforinas , Neoplasias de la Mama Triple Negativas , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/patología , MicroARNs/genética , N-Metiltransferasa de Histona-Lisina/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Glicoproteínas de Membrana/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Semaforinas/uso terapéutico
2.
Front Immunol ; 14: 1260195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868988

RESUMEN

Background: Identifying predictive markers for breast cancer (BC) prognosis and immunotherapeutic responses remains challenging. Recent findings indicate that N7-methylguanosine (m7G) modification and the tumor microenvironment (TME) are critical for BC tumorigenesis and metastasis, suggesting that integrating m7G modifications and TME cell characteristics could improve the predictive accuracy for prognosis and immunotherapeutic responses. Methods: We utilized bulk RNA-sequencing data from The Cancer Genome Atlas Breast Cancer Cohort and the GSE42568 and GSE146558 datasets to identify BC-specific m7G-modification regulators and associated genes. We used multiple m7G databases and RNA interference to validate the relationships between BC-specific m7G-modification regulators (METTL1 and WDR4) and related genes. Single-cell RNA-sequencing data from GSE176078 confirmed the association between m7G modifications and TME cells. We constructed an m7G-TME classifier, validated the results using an independent BC cohort (GSE20685; n = 327), investigated the clinical significance of BC-specific m7G-modifying regulators by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, and performed tissue-microarray assays on 192 BC samples. Results: Immunohistochemistry and RT-qPCR results indicated that METTL1 and WDR4 overexpression in BC correlated with poor patient prognosis. Moreover, single-cell analysis revealed relationships between m7G modification and TME cells, indicating their potential as indicators of BC prognosis and treatment responses. The m7G-TME classifier enabled patient subgrouping and revealed significantly better survival and treatment responses in the m7Glow+TMEhigh group. Significant differences in tumor biological functions and immunophenotypes occurred among the different subgroups. Conclusions: The m7G-TME classifier offers a promising tool for predicting prognosis and immunotherapeutic responses in BC, which could support personalized therapeutic strategies.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Pronóstico , Biomarcadores , ARN , Microambiente Tumoral/genética , Proteínas de Unión al GTP
3.
Front Genet ; 14: 1193944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456667

RESUMEN

Background: Breast cancer (BC), the leading cause of cancer-related deaths among women, remains a serious threat to human health worldwide. The biological function and prognostic value of disulfidptosis as a novel strategy for BC treatment via induction of cell death remain unknown. Methods: Gene mutations and copy number variations (CNVs) in 10 disulfidptosis genes were evaluated. Differential expression, prognostic, and univariate Cox analyses were then performed for 10 genes, and BC-specific disulfidptosis-related genes (DRGs) were screened. Unsupervised consensus clustering was used to identify different expression clusters. In addition, we screened the differentially expressed genes (DEGs) among different expression clusters and identified hub genes. Moreover, the expression level of DEGs was detected by RT-qPCR in cellular level. Finally, we used the least absolute shrinkage and selection operator (LASSO) regression algorithm to establish a prognostic feature based on DEGs, and verified the accuracy and sensitivity of its prediction through prognostic analysis and subject operating characteristic curve analysis. The correlation of the signature with the tumor immune microenvironment and tumor stemness was analyzed. Results: Disulfidptosis genes showed significant CNVs. Two clusters were identified based on three DRGs (DNUFS1, LRPPRC, SLC7A11). Cluster A was found to be associated with better survival outcomes(p < 0.05) and higher levels of immune cell infiltration(p < 0.05). A prognostic signature of four disulfidptosis-related DEGs (KIF21A, APOD, ALOX15B, ELOVL2) was developed by LASSO regression analysis. The signature showed a good prediction ability. In addition, the prognostic signature in this study were strongly related to the tumor microenvironment (TME), tumor immune cell infiltration, tumor mutation burden (TMB), tumor stemness, and drug sensitivity. Conclusion: The prognostic signature we constructed based on disulfidptosis-DEGs is a good predictor of prognosis in patients with BC. This prognostic signature is closely related to TME, and its potential correlation provides clues for further studies.

4.
BMC Cancer ; 22(1): 226, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236318

RESUMEN

BACKGROUND: The oncogenic drivers of triple-negative breast cancer (TNBC), which is characterized by worst prognosis compared with other subtypes, are poorly understood. Although next-generation sequencing technology has facilitated identifying potential targets, few of the findings have been translated into daily clinical practice. The present study is aimed to explore ZNF703 (Zinc finger 703) function and its underlying mechanism in TNBC. METHODS: ZNF703 expressions in tissue microarray were retrospectively examined by immunohistochemistry. The cell proliferation by SRB assay and colony formation assay, as well as cell cycle distribution by flow cytometry were assessed. The protein levels associated with possible underlying molecular mechanisms were evaluated by western blotting. Kaplan-Meier analysis was used to plot survival analysis. RESULTS: Our data suggest that ZNF703 expressed in 34.2% of triple-negative human breast tumors by immunohistochemistry. In vitro, ZNF703 knockdown had potent inhibitory effects on TNBC cell proliferation and cell cycle, with cyclin D1, CDK4, CDK6, and E2F1 downregulated, while Rb1 upregulated. Moreover, Kaplan-Meier analysis showed that high mRNA expression of ZNF703 was correlated to worse overall survival (HR for high expression was 3.04; 95% CI, 1.22 to 7.57, P = 0.017). CONCLUSIONS: Taken together, the results identified that targeting ZNF703 contributed to the anti-proliferative effects in TNBC cells, due to induced G1-phase arrest. This study is the first to identify ZNF703 as a potentially important protein that is involved in TNBC progression.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclo Celular/genética , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Femenino , Fase G1/genética , Humanos , Estimación de Kaplan-Meier , Pronóstico , Estudios Retrospectivos , Neoplasias de la Mama Triple Negativas/mortalidad , Regulación hacia Arriba/genética
5.
Evol Bioinform Online ; 17: 11769343211057573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795472

RESUMEN

The microbiome plays diverse roles in many diseases and can potentially contribute to cancer development. Breast cancer is the most commonly diagnosed cancer in women worldwide. Thus, we investigated whether the gut microbiota differs between patients with breast carcinoma and those with benign tumors. The DNA of the fecal microbiota community was detected by Illumina sequencing and the taxonomy of 16S rRNA genes. The α-diversity and ß-diversity analyses were used to determine richness and evenness of the gut microbiota. Gene function prediction of the microbiota in patients with benign and malignant carcinoma was performed using PICRUSt. There was no significant difference in the α-diversity between patients with benign and malignant tumors (P = 3.15e-1 for the Chao index and P = 3.1e-1 for the ACE index). The microbiota composition was different between the 2 groups, although no statistical difference was observed in ß-diversity. Of the 31 different genera compared between the 2 groups, level of only Citrobacter was significantly higher in the malignant tumor group than that in benign tumor group. The metabolic pathways of the gut microbiome in the malignant tumor group were significantly different from those in benign tumor group. Furthermore, the study establishes the distinct richness of the gut microbiome in patients with breast cancer with different clinicopathological factors, including ER, PR, Ki-67 level, Her2 status, and tumor grade. These findings suggest that the gut microbiome may be useful for the diagnosis and treatment of malignant breast carcinoma.

6.
Front Cell Dev Biol ; 9: 657547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928086

RESUMEN

PURPOSE: The m5C RNA methylation regulators are closely related to tumor proliferation, occurrence, and metastasis. This study aimed to investigate the gene expression, clinicopathological characteristics, and prognostic value of m5C regulators in triple-negative breast cancer (TNBC) and their correlation with the tumor immune microenvironment (TIM). METHODS: The TNBC data, Luminal BC data and HER2 positive BC data set were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, and 11 m5C RNA methylation regulators were analyzed. Univariate Cox regression and the least absolute shrinkage and selection operator regression models were used to develop a prognostic risk signature. The UALCAN and cBioportal databases were used to analyze the gene characteristics and gene alteration frequency of prognosis-related m5C RNA methylation regulators. Gene set enrichment analysis was used to analyze cellular pathways enriched by prognostic factors. The Tumor Immune Single Cell Hub (TISCH) and Timer online databases were used to explore the relationship between prognosis-related genes and the TIM. RESULTS: Most of the 11 m5C RNA methylation regulators were differentially expressed in TNBC and normal samples. The prognostic risk signature showed good reliability and an independent prognostic value. Prognosis-related gene mutations were mainly amplified. Concurrently, the NOP2/Sun domain family member 2 (NSUN2) upregulation was closely related to spliceosome, RNA degradation, cell cycle signaling pathways, and RNA polymerase. Meanwhile, NSUN6 downregulation was related to extracellular matrix receptor interaction, metabolism, and cell adhesion. Analysis of the TISCH and Timer databases showed that prognosis-related genes affected the TIM, and the subtypes of immune-infiltrating cells differed between NSUN2 and NSUN6. CONCLUSION: Regulatory factors of m5C RNA methylation can predict the clinical prognostic risk of TNBC patients and affect tumor development and the TIM. Thus, they have the potential to be a novel prognostic marker of TNBC, providing clues for understanding the RNA epigenetic modification of TNBC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA