Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 35(1): 42, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073469

RESUMEN

Studies have shown that the inhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)was neuroprotective against ischemia/reperfusion(I/R) injury. Bisperoxovanadium (bpV), a derivative of vanadate, is a well-established inhibitor of PTEN. However, its function islimited due to its general inadequacy in penetrating cell membranes. Mxene(Ti3C2Tx) is a novel two-dimensional lamellar nanomaterial with an excellent ability to penetrate the cell membrane. Yet, the effects of this nanomaterial on nervous system diseases have yet to be scrutinized. Here, Mxene(Ti3C2Tx) was used for the first time to carry bpV(HOpic), creating a new nanocomposite Mxene-bpV that was probed in a cerebral I/R injury model. The findings showed that this synthetic Mxene-bpV was adequately stable and can cross the cell membraneeasily. We observed that Mxene-bpV treatment significantly increased the survival rate of oxygen glucose deprivation/reperfusion(OGD/R)--insulted neurons, reduced infarct sizes and promoted the recovery of brain function after mice cerebral I/R injury. Crucially, Mxene-bpV treatment was more therapeutically efficient than bpV(HOpic) treatment alone over the same period. Mechanistically, Mxene-bpV inhibited the enzyme activity of PTEN in vitro and in vivo. It also promoted the expression of phospho-Akt (Ser473) by repressing PTEN and then activated the Akt pathway to boost cell survival. Additionally, in PTEN transgenic mice, Mxene-bpV suppressed I/R-induced inflammatory response by promoting M2 microglial polarization through PTEN inhibition. Collectively, the nanosynthetic Mxene-bpV inhibited PTEN' enzymatic activity by activating Akt pathway and promoting M2 microglial polarization, and finally exerted neuroprotection against cerebral I/R injury.


Asunto(s)
Microglía , Fármacos Neuroprotectores , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Daño por Reperfusión , Transducción de Señal , Compuestos de Vanadio , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Transducción de Señal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Compuestos de Vanadio/farmacología , Compuestos de Vanadio/química , Fosfohidrolasa PTEN/metabolismo , Masculino , Ratones Endogámicos C57BL , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Polaridad Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nanocompuestos/química
2.
Int Immunopharmacol ; 134: 112257, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759366

RESUMEN

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a major contributor to neonatal mortality and neurodevelopmental disorders, but currently there is no effective therapy drug for HIE. Mitochondrial dysfunction plays a pivotal role in hypoxic-ischemic brain damage(HIBD). Menaquinone-4 (MK-4), a subtype of vitamin K2 prevalent in the brain, has been shown to enhance mitochondrial function and exhibit protective effects against ischemia-reperfusion injury. However, the impact and underlying molecular mechanism of MK-4 in HIE have not been fully elucidated. METHODS: In this study, we established the neonatal rats HIBD model in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) of primary neurons in vitro to explore the neuroprotective effects of MK-4 on HI damage, and illuminate the potential mechanism. RESULTS: Our findings revealed that MK-4 ameliorated mitochondrial dysfunction, reduced oxidative stress, and prevented HI-induced neuronal apoptosis by activating the Sirt1-PGC-1α-TFAM signaling pathway through Sirt1 mediation. Importantly, these protective effects were partially reversed by EX-527, a Sirt1 inhibitor. CONCLUSION: Our study elucidated the potential therapeutic mechanism of MK-4 in neonatal HIE, suggesting its viability as an agent for enhancing recovery from HI-induced cerebral damage in newborns. Further exploration into MK-4 could lead to novel interventions for HIE therapy.


Asunto(s)
Animales Recién Nacidos , Apoptosis , Hipoxia-Isquemia Encefálica , Mitocondrias , Neuronas , Fármacos Neuroprotectores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1 , Vitamina K 2 , Animales , Sirtuina 1/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacología , Vitamina K 2/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratas , Neuronas/efectos de los fármacos , Neuronas/patología , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo
3.
Mil Med Res ; 11(1): 31, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797843

RESUMEN

Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration. However, these methods are somewhat limited, constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations. The advent of emerging spatiotemporal multi-omics approaches, encompassing transcriptomics, proteomics, metabolomics, and epigenomics, furnishes comprehensive insights into these intricate molecular dynamics. These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells, tissues, and organs, thereby offering an in-depth understanding of the fundamental mechanisms at play. This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research. It underscores how these methodologies augment our comprehension of molecular dynamics, cellular interactions, and signaling pathways. Initially, the review delineates the foundational principles underpinning these methods, followed by an evaluation of their recent applications within the field. The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field. Indubitably, spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration, thus charting a course toward potential therapeutic innovations.


Asunto(s)
Envejecimiento , Genómica , Proteómica , Medicina Regenerativa , Envejecimiento/fisiología , Humanos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Genómica/métodos , Proteómica/métodos , Metabolómica/métodos , Epigenómica/métodos , Multiómica
4.
Adv Mater ; 36(14): e2310483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198600

RESUMEN

Electrical stimulation (ES) has shown beneficial effects in repairing injured tissues. However, current ES techniques that use tissue-traversing leads and bulky external power suppliers have significant limitations in translational medicine. Hence, exploring noninvasive in vivo ES to provide controllable electrical cues in tissue engineering is an imminent necessity. Herein, a conductive hydrogel with in situ electrical generation capability as a biodegradable regeneration scaffold and wireless ES platform for spinal cord injury (SCI) repair is demonstrated. When a soft insulated metal plate is placed on top of the injury site as a wireless power transmitter, the conductive hydrogel implanted at the injury site can serve as a wireless power receiver, and the capacitive coupling between the receiver and transmitter can generate an alternating current in the hydrogel scaffold owing to electrostatic induction effect. In a complete transection model of SCI rats, the implanted conductive hydrogels with capacitive-coupling in situ ES enhance functional recovery and neural tissue repair by promoting remyelination, accelerating axon regeneration, and facilitating endogenous neural stem cell differentiation. This facile wireless-powered electroactive-hydrogel strategy thus offers on-demand in vivo ES with an adjustable timeline, duration, and strength and holds great promise in translational medicine.


Asunto(s)
Regeneración Nerviosa , Traumatismos de la Médula Espinal , Ratas , Animales , Axones , Hidrogeles/farmacología , Traumatismos de la Médula Espinal/terapia , Estimulación Eléctrica , Andamios del Tejido
5.
Small ; 20(23): e2309793, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148305

RESUMEN

The nerve guidance conduits incorporated with stem cells, which can differentiate into the Schwann cells (SCs) to facilitate myelination, shows great promise for repairing the severe peripheral nerve injury. The innovation of advanced hydrogel materials encapsulating stem cells, is highly demanded for generating supportive scaffolds and adaptive microenvironment for nerve regeneration. Herein, this work demonstrates a novel strategy in regulating regenerative microenvironment for peripheral nerve repair with a biodegradable conductive hydrogel scaffold, which can offer multifunctional capabilities in immune regulation, enhancing angiogenesis, driving SCs differentiation, and promoting axon regrowth. The biodegradable conductive hydrogel is constructed by incorporation of polydopamine-modified silicon phosphorus (SiP@PDA) nanosheets into a mixture of methacryloyl gelatin and decellularized extracellular matrix (GelMA/ECM). The biomimetic electrical microenvironment performs an efficacious strategy to facilitate macrophage polarization toward a pro-healing phenotype (M2), meanwhile the conductive hydrogel supports vascularization in regenerated tissue through sustained Si element release. Furthermore, the MSCs 3D-cultured in GelMA/ECM-SiP@PDA conductive hydrogel exhibits significantly increased expression of genes associated with SC-like cell differentiation, thus facilitating the myelination and axonal regeneration. Collectively, both the in vitro and in vivo studies demonstrates that the rationally designed biodegradable multifunctional hydrogel significantly enhances nerve tissues repair.


Asunto(s)
Hidrogeles , Regeneración Nerviosa , Hidrogeles/química , Animales , Regeneración Nerviosa/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Gelatina/química , Polímeros/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células de Schwann/citología , Células de Schwann/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratones , Andamios del Tejido/química , Células Madre/citología , Conductividad Eléctrica , Indoles/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Metacrilatos
6.
ACS Nano ; 18(1): 245-263, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38117780

RESUMEN

Poor clinical efficacy associated with postoperative hepatocellular carcinoma (HCC) often results from recurrence and metastasis. Hence, research has focused on establishing an effective multimodal therapy. However, complex combinations of active ingredients require multiple functions in therapeutic systems. Herein, a portable nanofiber patch composing germanium phosphorus (GeP) and anlotinib (AL) was designed to form a versatile platform for molecularly targeted photothermal-immune checkpoint blockade (ICB) trimodal combination therapy. The patches possess hydrophilic, satisfactory mechanical, and excellent photothermal conversion properties. Moreover, they achieve a penetrating and sustained drug release. The near-infrared light-assisted GeP-induced temperature increase regulates AL release, downregulating the expression of vascular-related factor receptors, triggering immunogenic cell death of tumor cells, and inducing dendritic cell maturation. Simultaneously, ICB therapy (programmed cell death ligand 1, PD-L1) was introduced to improve treatment outcomes. Notably, this trimodal combination therapy significantly inhibits vascular hypergrowth, enhances effector T-cell infiltration, and sensitizes the PD-L1 antibody response, boosting immunotherapy to suppress residual HCC recurrence and metastasis. Further validation of the genome sequencing results revealed cell pathways related primarily to regulatory immune effects. This study demonstrates the use of an effective and practical nanofiber patch to improve multimodal therapy of postoperative HCC, with high clinical translation value.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanofibras , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Antígeno B7-H1 , Nanofibras/uso terapéutico , Terapia Combinada , Inmunoterapia/métodos , Microambiente Tumoral
7.
Mil Med Res ; 10(1): 36, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587531

RESUMEN

Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos de los Tejidos Blandos , Humanos , Piel , Cicatrización de Heridas
8.
Mil Med Res ; 10(1): 38, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592342

RESUMEN

The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field. Although bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) have provided insights into cell types and heterogeneity in the respiratory system, the relevant specific spatial localization and cellular interactions have not been clearly elucidated. Spatial transcriptomics (ST) has filled this gap and has been widely used in respiratory studies. This review focuses on the latest iterative technology of ST in recent years, summarizing how ST can be applied to the physiological and pathological processes of the respiratory system, with emphasis on the lungs. Finally, the current challenges and potential development directions are proposed, including high-throughput full-length transcriptome, integration of multi-omics, temporal and spatial omics, bioinformatics analysis, etc. These viewpoints are expected to advance the study of systematic mechanisms, including respiratory studies.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Biología Computacional , Multiómica
9.
Mil Med Res ; 10(1): 35, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525300

RESUMEN

BACKGROUND: Most bone-related injuries to grassroots troops are caused by training or accidental injuries. To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops, it is imperative to develop new strategies and scaffolds to promote bone regeneration. METHODS: In this study, a porous piezoelectric hydrogel bone scaffold was fabricated by incorporating polydopamine (PDA)-modified ceramic hydroxyapatite (PDA-hydroxyapatite, PHA) and PDA-modified barium titanate (PDA-BaTiO3, PBT) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physical and chemical properties of the Cs/Gel/PHA scaffold with 0-10 wt% PBT were analyzed. Cell and animal experiments were performed to characterize the immunomodulatory, angiogenic, and osteogenic capabilities of the piezoelectric hydrogel scaffold in vitro and in vivo. RESULTS: The incorporation of BaTiO3 into the scaffold improved its mechanical properties and increased self-generated electricity. Due to their endogenous piezoelectric stimulation and bioactive constituents, the as-prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory, angiogenic, and osteogenic capabilities; they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration, tube formation, and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) and facilitated the migration, osteo-differentiation, and extracellular matrix (ECM) mineralization of MC3T3-E1 cells. The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model. The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis, and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization. CONCLUSION: The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation, angiogenesis, and osteogenesis functions may be used as a substitute in periosteum injuries, thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat effectiveness in grassroots troops.


Asunto(s)
Quitosano , Medicina Militar , Ratas , Humanos , Animales , Osteogénesis , Ingeniería de Tejidos , Hidrogeles/química , Hidrogeles/farmacología , Fosfatidilinositol 3-Quinasas/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Quitosano/farmacología , Células Endoteliales de la Vena Umbilical Humana , Hidroxiapatitas/farmacología
11.
Bioact Mater ; 22: 274-290, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36263097

RESUMEN

Spinal cord injury (SCI) is a serious clinical disease. Due to the deformability and fragility of the spinal cord, overly rigid hydrogels cannot be used to treat SCI. Hence, we used TPA and Laponite to develop a hydrogel with shear-thinning ability. This hydrogel exhibits good deformation, allowing it to match the physical properties of the spinal cord; additionally, this hydrogel scavenges ROS well, allowing it to inhibit the lipid peroxidation caused by ferroptosis. According to the in vivo studies, the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism. In addition, dental pulp stem cells (DPSCs) were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses. It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.

13.
Bioact Mater ; 15: 29-43, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35386360

RESUMEN

Low back pain, mainly caused by intervertebral disc degeneration (IVDD), is a common health problem; however, current surgical treatments are less than satisfactory. Thus, it is essential to develop novel non-invasive surgical methods for IVDD treatment. Here, we describe a therapeutic strategy to inhibit IVDD by injecting hydrogels modified with the extracellular matrix of costal cartilage (ECM-Gels) that are loaded with cartilage endplate stem cells (CESCs). After loaded with CESCs overexpressing Sphk2 (Lenti-Sphk2-CESCs) and injected near the cartilage endplate (CEP) of rats in vivo, ECM-Gels produced Sphk2-engineered exosomes (Lenti-Sphk2-Exos). These exosomes penetrated the annulus fibrosus (AF) and transported Sphk2 into the nucleus pulposus cells (NPCs). Sphk2 activated the phosphatidylinositol 3-kinase (PI3K)/p-AKT pathway as well as the intracellular autophagy of NPCs, ultimately ameliorating IVDD. This study provides a novel and efficient non-invasive combinational strategy for IVDD treatment using injectable ECM-Gels loaded with CESCs that express Sphk2 with sustained release of functional exosomes.

15.
Front Cell Dev Biol ; 9: 693694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195203

RESUMEN

Reducing neuronal death after spinal cord injury (SCI) is considered to be an important strategy for the renovation of SCI. Studies have shown that, as an important regulator of the development and maintenance of neural structure, acidic fibroblast growth factor (aFGF) has the role of tissue protection and is considered to be an effective drug for the treatment of SCI. Neural stem cells (NSCs) are rendered with the remarkable characteristics to self-replace and differentiate into a variety of cells, so it is promising to be used in cell transplantation therapy. Based on the facts above, our main aim of this research is to explore the role of NSCs expressing aFGF meditated by five hypoxia-responsive elements (5HRE) in the treatment of SCI by constructing AAV-5HRE-aFGF-NSCs and transplanting it into the area of SCI. Our research results showed that AAV-5HRE-aFGF-NSCs can effectively restore the motor function of rats with SCI. This was accomplished by inhibiting the expression of caspase 12/caspase 3 pathway, EIF2α-CHOP pathway, and GRP78 protein to inhibit apoptosis.

16.
Bioact Mater ; 6(8): 2452-2466, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33553827

RESUMEN

Cell-based transplantation strategies possess great potential for spinal cord injury (SCI) repair. Basic fibroblast growth factor (bFGF) has been reported to have multiple neuro-promoting effects on developing and adult nervous system of mammals and considered a promising therapy for nerve injury following SCI. Human dental pulp stem cells (DPSCs) are abundant stem cells with low immune rejection, which can be considered for cell replacement therapy. The purpose of this study was to investigate the roles of DPSCs which express bFGF under the regulation of five hypoxia-responsive elements (5HRE) using an adeno-associated virus (AAV-5HRE-bFGF-DPSCs) in SCI repairing model. In this study, DPSCs were revealed to differentiate into CD13+ pericytes and up-regulate N-cadherin expression to promote the re-attachment of CD13+ pericytes to vascular endothelial cells. The re-attachment of CD13+ pericytes to vascular endothelial cells subsequently increased the flow rate of blood in microvessels via the contraction of protuberance. As a result, increased numbers of red blood cells carried more oxygen to the damaged area and the local hypoxia microenvironment in SCI was improved. Thus, this study represents a step forward towards the potential use of AAV-5HRE-bFGF-DPSCs in SCI treatment in clinic.

17.
Nat Aging ; 1(10): 904-918, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-37118330

RESUMEN

Gonadotropin-releasing hormone (GnRH) has a role in hypothalamic control of aging, but the underlying patterns and relationship with downstream reproductive hormones are still unclear. Here we report that hypothalamic GnRH pulse frequency and irregularity increase before GnRH pulse amplitude slowly decreases during aging. GnRH is inhibited by nuclear factor (NF)-κB, and GnRH pulses were controlled by oscillations in the transcriptional activity of NF-κB. Exposure to testosterone under pro-inflammatory conditions stimulated both NF-κB oscillations and GnRH pulses. While castration of middle-aged mice induced short-term anti-aging effects, preventing elevation of luteinizing hormone (LH) levels after castration led to long-term anti-aging effects and lifespan extension, indicating that high-frequency GnRH pulses and high-magnitude LH levels coordinately mediate aging. Reprogramming the endogenous GnRH pulses of middle-aged male mice via an optogenetic approach revealed that increasing GnRH pulses frequency causes LH excess and aging acceleration, while lowering the frequency of and stabilizing GnRH pulses can slow down aging. In conclusion, GnRH pulses are important for aging in male mice.


Asunto(s)
Hormona Liberadora de Gonadotropina , Hormona Luteinizante , Masculino , Ratones , Animales , Hormona Liberadora de Gonadotropina/farmacología , Hormona Folículo Estimulante , FN-kappa B , Envejecimiento , Orquiectomía
19.
Bioact Mater ; 6(7): 1867-1877, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33336117

RESUMEN

Heart disease is still the leading killer all around the world, and its incidence is expected to increase over the next decade. Previous reports have already shown the role of fibroblast growth factor10 (FGF10) in alleviating heart diseases. However, FGF10 has not been used to treat heart diseases because the free protein has short half-life and low bioactivity. Here, an injectable coacervate was designed to protect growth factor from degradation during delivery and the effects of the FGF10 coacervate were studied using a mice acute myocardial infarction (MI) model. As shown in our echocardiographic results, a single injection of FGF10 coacervate effectively inhibited preserved cardiac contractibility and ventricular dilation when compared with free FGF10 and the saline treatment 6 weeks after MI. It is revealed in histological results that the MI induced myocardial inflammation and fibrosis was reduced after FGF10 coacervate treatment. Furthermore, FGF10 coacervate treatment could improve arterioles and capillaries stabilization through increasing the proliferation of endothelial and mural cells. However, with the same dosage, no statistically significant difference was shown between free FGF10, heparin+FGF10 and saline treatment, especially in long term. On another hand, FGF10 coacervate also increased the expression of cardiac-associated the mRNA (cTnT, Cx43 and α-SMA), angiogenic factors (Ang-1 and VEGFA) and decreased the level of inflammatory factor (tumor necrosis factor-α). The downstream signaling of the FGF10 was also investigated, with the western blot results showing that FGF10 coacervate activated the p-FGFR, PI3K/Akt and ERK1/2 pathways to a more proper level than free FGF10 or heparin+FGF10. In general, it is revealed in this research that one-time injection of FGF10 coacervate sufficiently attenuated MI induced injury when compared with an equal dose of free FGF10 or heparin+FGF10 injection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...