RESUMEN
B-cell maturation antigen (BCMA) has emerged as a promising tumor marker for the diagnosis and treatment of multiple myeloma. The noninvasive and rapid detection of BCMA expression in vivo provides significant value in screening and evaluating multiple myeloma patients receiving BCMA-targeted therapy. We identified the BCMA-targeting peptide BP1 from a one-bead-one-compound (OBOC) peptide library using a high-throughput microarray strategy. The BCMA-targeting specificity and affinity of BP1 were assessed by surface plasmon resonance imaging (SPRi), flow cytometry, and confocal imaging. BCMA-positive (H929) and BCMA-negative (K562) subcutaneous tumor models were established and labeled with 68Ga for BP1, followed by PET imaging and biodistribution studies. PET imaging demonstrated that 68Ga-labeled BP1 has significant specific uptake in multiple myeloma, enabling rapid identification of BCMA expression and precise delineation of the disease. Thus, BP1 represents an ideal candidate for multiple myeloma imaging.
Asunto(s)
Antígeno de Maduración de Linfocitos B , Radioisótopos de Galio , Mieloma Múltiple , Tomografía de Emisión de Positrones , Antígeno de Maduración de Linfocitos B/metabolismo , Mieloma Múltiple/diagnóstico por imagen , Humanos , Tomografía de Emisión de Positrones/métodos , Animales , Radioisótopos de Galio/química , Ratones , Péptidos/química , Línea Celular Tumoral , Distribución Tisular , Radiofármacos/química , Radiofármacos/farmacocinética , Compuestos Heterocíclicos con 1 Anillo/químicaRESUMEN
Aberrant activation of thioredoxin reductase (TrxR) is correlated with tumor occurrence and progression, suggesting that TrxR inhibitors can be used as antitumor agents. In this study, we evaluated the anticancer efficacy of eupalinilides B on colorectal cancer cells. Eupalinilides B primarily targeted the conserved selenocysteine 498 residues in TrxR. Besides, it inhibited the enzyme activity in an irreversible manner. After eupalinilides B was used to pharmacologically inhibit TrxR, reactive oxygen species accumulated, and the intracellular redox balance was broken, finally causing oxidative stress-induced tumor cell apoptosis. Significantly, eupalinilides B treatment inhibited in vivo tumor growth. Targeting TrxR by eupalinilides B reveals the new mechanism underlying eupalinilides B and provides insight in developing eupalinilides B as the candidate antitumor chemotherapeutic agent for the treatment of cancer.
Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias Colorrectales , Especies Reactivas de Oxígeno , Reductasa de Tiorredoxina-Disulfuro , Apoptosis/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Humanos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Endogámicos BALB C , Ratones Desnudos , Estrés Oxidativo/efectos de los fármacosRESUMEN
Circulating tumor cells (CTCs) have significant clinical value in early tumor detection, dynamic monitoring and immunotherapy. CTC detection stands out as a leading non-invasive approach for tumor diagnostics and therapeutics. However, the high heterogeneity of CTCs and the occurrence of epithelial-mesenchymal transition (EMT) during metastasis pose challenges to methods relying on EpCAM-positive enrichment. To address these limitations, a method based on negative enrichment of CTCs using specific leukocyte targets has been developed. In this study, aiming to overcome the low purity associated with immunomagnetic beads targeting solely the leukocyte common antigen CD45, we introduced CD66b-modified immunomagnetic beads. CD66b, a specific target for neutrophils with abundant residues, was chosen as a complementary approach. The process involved initial collection of nucleated cells from whole blood samples using density gradient centrifugation. Subsequently, magnetically labeled leukocytes were removed by magnetic field, enabling the capture of CTCs with higher sensitivity and purity while retaining their activity. Finally, we selected 20 clinical blood samples from patients with various cancers to validate the effectiveness of this strategy, providing a new generalized tool for the clinical detection of CTCs.
RESUMEN
Alzheimer's disease (AD) starts decades before cognitive symptoms develop. Easily accessible and cost-effective biomarkers that accurately reflect AD pathology are essential for both monitoring and therapeutics of AD. Neurofilament light chain (NfL) levels in blood and cerebrospinal fluid are increased in AD more than a decade before the expected onset, thus providing one of the most promising blood biomarkers for monitoring of AD. The clinical practice of employing single-molecule array (Simoa) technology for routine use in patient care is limited by the high costs. Herein, we developed a microarray chip-based high-throughput screening method and screened an attractive self-assembling peptide targeting NfL. Through directly "imprinting" and further analyzing the sequences, morphology, and affinity of the identified self-assembling peptides, the Pep-NfL peptide nanosheet with high binding affinity toward NfL (KD = 1.39 × 10-9 mol/L), high specificity, and low cost was characterized. The superior binding ability of Pep-NfL was confirmed in AD mouse models and cell lines. In the clinical setting, the Pep-NfL peptide nanosheets hold great potential for discriminating between patients with AD (P < 0.001, n = 37), mild cognitive impairment (P < 0.05, n = 26), and control groups (n = 30). This work provides a high-throughput, high-sensitivity, and economical system for noninvasive tracking of AD to monitor neurodegeneration at different stages of disease. The obtained Pep-NfL peptide nanosheet may be useful for assessing dynamic changes in plasma NfL concentrations to evaluate disease-modifying therapies as a surrogate end point of neurodegeneration in clinical trials.
Asunto(s)
Enfermedad de Alzheimer , Proteínas de Neurofilamentos , Péptidos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/sangre , Proteínas de Neurofilamentos/sangre , Animales , Humanos , Ratones , Péptidos/química , Ensayos Analíticos de Alto Rendimiento , Biomarcadores/sangre , Biomarcadores/metabolismo , Análisis por Matrices de ProteínasRESUMEN
BACKGROUND: MMP-9 plays a crucial role in regulating the degradation of proteins within the extracellular matrix (ECM). This process closely correlates with the occurrence, development, invasion, and metastasis of various tumors, each exhibiting diverse levels of MMP-9 expression. However, the accuracy of detection results using the single-mode method is compromised due to the coexistence of multiple biologically active substances in the ECM. RESULTS: Therefore, in this study, a tri-modal detection system is proposed to obtain more accurate information by cross-verifying the results. Herein, we developed a tri-modal assay using the ZIF-8@Au NPs@S QDs composite as a multifunctional signal probe, decorated with DNA for the specific capture of MMP9. Notably, the probe demonstrated high conductivity, fluorescence response and mimicked enzyme catalytic activity. The capture segments of hybrid DNA specifically bind to MMP9 in the presence of MMP9, causing the signal probe to effortlessly detach the sensor interface onto the sample solution. Consequently, the sensor current performance is weakened, with the colorimetric and fluorescent signals becoming stronger with increasing MMP9 concentration. Notably, the detection range of the tri-modal sensor platform spans over 10 orders of magnitude, verifying notable observations of MMP-9 secretion in four tumor cell lines with chemotherapeutic drugs. Furthermore, the reliability of the detection results can be enhanced by employing pairwise comparative analysis. SIGNIFICANCE: This paper presents an effective strategy for detecting MMP9, which can be utilized for both the assessment of MMP-9 in cell lines and for analyzing the activity and mechanisms involved in various tumors.
Asunto(s)
Antineoplásicos , Colorimetría , Técnicas Electroquímicas , Matriz Extracelular , Metaloproteinasa 9 de la Matriz , Estructuras Metalorgánicas , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/análisis , Humanos , Colorimetría/métodos , Técnicas Electroquímicas/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Estructuras Metalorgánicas/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Espectrometría de Fluorescencia , Oro/química , Técnicas Biosensibles/métodosRESUMEN
INTRODUCTION: Breast cancer ranks second as the most common malignancy globally, after lung cancer. Among the various subtypes of breast cancer, HER2 positive breast cancer (HER2 BC)poses a particularly challenging prognosis due to its heightened invasiveness and metastatic potential. The objective of this study was to construct a composite piezoelectric nanoparticle based on poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) for imaging and treatment of HER2 BC. METHOD: By reshaping the crystal structure of P(VDF-TrFE) piezoelectric nanoparticles, improving hydrophilicity, and incorporating imaging capabilities, we developed piezoelectric composite nanoparticles (PGd@tNBs) that integrate imaging and therapeutic functions. The in vitro characterization encompassed the assessment of piezoelectric properties, hydrophilicity, imaging performance, and therapeutic efficacy of these particles. The targeting and therapeutic effectiveness of PGd@tNBs particles were further validated in the SK-BR3 cell line and subsequently confirmed in HER2-positive tumor-bearing mice. RESULTS: The nanoparticle demonstrated excellent biocompatibility and impressive multimodal imaging performance. Magnetic resonance imaging (MRI) observations revealed significant accumulation of PGd@tNBs particles in the HER2 positive tumor, exhibiting superior contrast-enhanced ultrasound performance compared to traditional ultrasound contrast agents, and small animal in vivo imaging showed that PGd@tNBs particles were primarily excreted through respiration and urinary metabolism. Piezoforce Microscopy characterization highlighted the outstanding piezoelectric properties of PGd@tNBs particles. Upon targeted binding to HER2-BC, ultrasound stimulation influenced the cell membrane potential, leading to reversible electroporation. This, in turn, affected the balance of calcium ions inside and outside the cells and the mitochondrial membrane potential. Following ingestion by cells, PGd@tNBs, when exposed to ultrasound, triggered the generation of reactive oxygen species (ROS), resulting in the consumption of glutathione and superoxide dismutase and achieving sonodynamic therapy. Notably, repeated ultrasound stimulation, post PGd@tNBs particles binding and entry into cells, increased ROS production and elevated the apoptosis rate by approximately 45%. CONCLUSION: In conclusion, the PGd@tNBs particles developed exhibit outstanding imaging and therapeutic efficacy, holding potential for precise diagnosis and personalized treatment of HER2 BC.
Asunto(s)
Neoplasias de la Mama , Nanopartículas , Receptor ErbB-2 , Animales , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Humanos , Ratones , Línea Celular Tumoral , Receptor ErbB-2/metabolismo , Nanopartículas/química , Imagen por Resonancia Magnética , Terapia por Ultrasonido/métodos , Ratones Desnudos , Ratones Endogámicos BALB C , Medios de Contraste/química , Apoptosis/efectos de los fármacosRESUMEN
Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP. The ratio of SA/GG significantly affects the network structure of IPN hydrogels and the performance of delivering GTP. The hydrogel formed by interpenetrating 20â¯% GG with 80â¯% SA as the main network had the highest water uptake (55â¯g/g), holding capacity (950â¯mg/g), and freeze-thaw stability, with springiness reaching 0.933 and hardness reaching 1300â¯g, which due to the filling effect and non-covalent interaction. Rheological tests showed that the crosslink density of IPN hydrogel in SA-dominated network was improved by the addition of GG to make it better bound to GTP, and the higher water uptake meant that the system could absorb more GTP-containing solution. This IPN hydrogel maintained 917.3â¯mg/g encapsulation efficiency at the highest loading capacity (1080â¯mg/g) in tests as delivery system. In in vitro digestion simulations, owing to the pH responsiveness, the IPN hydrogel reduced the loss of GTP in gastric fluid, achieving a bioaccessibility of 71.6â¯% in the intestinal tract.
Asunto(s)
Disponibilidad Biológica , Hidrogeles , Polifenoles , Té , Hidrogeles/química , Polifenoles/química , Polifenoles/farmacocinética , Té/química , Alginatos/química , Polisacáridos Bacterianos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Reología , Portadores de Fármacos/químicaRESUMEN
A new sol-gel method that employs cation exchange from an aqueous metal ion solution with H+ ions of granulated alginic acid was developed for synthesizing high-purity Y2O3 nanoparticles. In this study, the cation exchange kinetics of H+~Y3+ in aqueous solution were analyzed using on-line pH technology and off-line inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. Pseudo 2nd-order models were utilized to evaluate the parameters of the kinetics, suggesting that the concentration of H+~Y3+ involved in the cation exchange reaction was 1:1.733. Further, a comprehensive understanding of the Y-ALG calcination process was developed using thermo-gravimetric analysis, along with results obtained from differential scanning calorimetry (TGA/DSC). A detailed analysis of the XRD Rietveld refinement plots revealed that the crystallite sizes of Y2O3 nanoparticles were about 4 nm (500 °C) and 15 nm (800 °C), respectively. Differential pulse voltammetry (DPV) was employed to investigate the electrochemical oxidation of catechol. The oxidation peak currents of catechol at Y2O3 (500 °C)/GCE and Y2O3 (800 °C)/GCE showed two stages linear function of concentration (2.0~20.0 × 10-6 mol/L, 20.0~60.0 × 10-6 mol/L). The results indicated that the detection limits were equal to 2.4 × 10-7 mol/L (Y2O3 (500 °C)/GCE) and 7.8 × 10-7 mol/L (Y2O3 (800 °C)/GCE). The study not only provided a method to synthesize metal oxide, but also proposed a promising on-line pH model to study cation exchange kinetics.
RESUMEN
Introduction: Patients with advanced primary liver cancer often lose the opportunity for surgery when they are found, and the treatment options are limited. Lenvatinib, as a multi-target tyrosine kinase inhibitor, has been used as the first-line treatment for advanced liver cancer. Immune checkpoint inhibitors, such as programmed cell death protein 1 inhibitors, have been successfully used in advanced or metastatic liver cancer. Case Presentation: We report a case of combined lenvatinib and the programmed cell death protein 1 inhibitor camrelizumab in the treatment of primary liver cancer, in which the rare complication of full-thickness gastric mucosa exfoliation occurred. To the best of our knowledge, this is the first report of the side effect of hemorrhagic exfoliative gastritis with the combination of lenvatinib and camrelizumab. Conclusion: Hemorrhagic exfoliative gastritis is an extremely rare clinical complication. Lenvatinib inhibits vascular proliferation and could cause gastrointestinal perforation, which is considered to be the main factor, but whether camrelizumab plays a role in it or only causes gastrointestinal reactions leading to nausea and vomiting, resulting in gastric mucosal exfoliation bleeding, remains to be further explored.
RESUMEN
The association between dysfunctional microglia and amyloid-ß (Aß) is a fundamental pathological event and increases the speed of Alzheimer's disease (AD). Additionally, the pathogenesis of AD is intricate and a single drug may not be enough to achieve a satisfactory therapeutic outcome. Herein, we reported a facile and effective gene therapy strategy for the modulation of microglia function and intervention of Aß anabolism by ROS-responsive biomimetic exosome-liposome hybrid nanovesicles (designated as TSEL). The biomimetic nanovesicles codelivery ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) siRNA (siBACE1) and TREM2 plasmid (pTREM2) gene drug efficiently penetrate the blood-brain barrier and enhance the drug accumulation at AD lesions with the help of exosomes homing ability and angiopep-2 peptides. Specifically, an upregulation of TREM2 expression can reprogram microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype while also restoring its capacity to phagocytose Aß and its nerve repair function. In addition, siRNA reduces the production of Aß plaques at the source by knocking out the BACE1 gene, which is expected to further enhance the therapeutic effect of AD. The in vivo study suggests that TSEL through the synergistic effect of two gene drugs can ameliorate APP/PS1 mice cognitive impairment by regulating the activated microglial phenotype, reducing the accumulation of Aß, and preventing the retriggering of neuroinflammation. This strategy employs biomimetic nanovesicles for the delivery of dual nucleic acids, achieving synergistic gene therapy for AD, thus offering more options for the treatment of AD.
Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Materiales Biomiméticos , Terapia Genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ratones , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Técnicas de Transferencia de Gen , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Humanos , Liposomas/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Biomimética , Exosomas/metabolismo , Exosomas/química , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genéticaRESUMEN
Redox nanoparticles have been extensively developed for chemotherapy. However, the intracellular oxidative stress induced by constant aberrant glutathione (GSH), reactive oxygen species (ROS) and gamma-glutamyl transpeptidase (GGT) homeostasis remains the primary cause of evading tumor apoptosis. Herein, an oxidative stress-amplification strategy was designed using a pH-GSH-H2O2-GGT sensitive nano-prodrug for precise synergistic chemotherapy. The disulfide bond- conjugated doxorubicin prodrug (DOX-ss) was constructed as a GSH-scavenger. Then, phenylboronic acid (PBA), DOX-ss and poly (γ-glutamic acid) (γ-PGA) were successively conjugated using chitosan oligosaccharide (COS) to obtain the nano-prodrug PBA-COS-ss-DOX/γ-PGA. The PBA-COS-ss-DOX/γ-PGA prodrug could tightly attach to the polymer chain segment by atom transfer radical polymerization. Simultaneously, the drug interacted relatively weakly with the polymer by encapsulating ionic crosslinkers in DOX@PBA-COS/γ-PGA. The disulfide bond of the DOX-ss prodrug as a GSH-scavenger could be activated using overexpressed GSH to release DOX. Particularly, PBA-COS-ss-DOX/γ-PGA could prevent premature drug leakage and facilitate DOX delivery by GGT-targeting and intracellular H2O2-cleavable linker in human hepatocellular carcinoma (HepG2) cells. Concurrently, the nano-prodrug induced strong oxidative stress and tumor cell apoptosis. Collectively, the pH-GSH-H2O2-GGT responsive nano-prodrug shows potential for synergistic tumor therapy.
Asunto(s)
Quitosano , Doxorrubicina , Nanopartículas , Oligosacáridos , Estrés Oxidativo , Profármacos , Quitosano/química , Estrés Oxidativo/efectos de los fármacos , Profármacos/química , Profármacos/farmacología , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Oligosacáridos/química , Oligosacáridos/farmacología , Nanopartículas/química , Glutatión/metabolismo , Glutatión/química , Células Hep G2 , Especies Reactivas de Oxígeno/metabolismo , Ácido Poliglutámico/química , Ácido Poliglutámico/análogos & derivados , Peróxido de Hidrógeno/química , Liberación de Fármacos , Portadores de Fármacos/química , Apoptosis/efectos de los fármacos , gamma-Glutamiltransferasa/metabolismo , Ácidos Borónicos/química , Concentración de Iones de HidrógenoRESUMEN
In clinical research, the segmentation of irregularly shaped nuclei, particularly in mesenchymal areas like fibroblasts, is crucial yet often neglected. These irregular nuclei are significant for assessing tissue repair in immunotherapy, a process involving neovascularization and fibroblast proliferation. Proper segmentation of these nuclei is vital for evaluating immunotherapy's efficacy, as it provides insights into pathological features. However, the challenge lies in the pronounced curvature variations of these non-convex nuclei, making their segmentation more difficult than that of regular nuclei. In this work, we introduce an undefined task to segment nuclei with both regular and irregular morphology, namely multi-shape nuclei segmentation. We propose a proposal-based method to perform multi-shape nuclei segmentation. By leveraging the two-stage structure of the proposal-based method, a powerful refinement module with high computational costs can be selectively deployed only in local regions, improving segmentation accuracy without compromising computational efficiency. We introduce a novel self-attention module to refine features in proposals for the sake of effectiveness and efficiency in the second stage. The self-attention module improves segmentation performance by capturing long-range dependencies to assist in distinguishing the foreground from the background. In this process, similar features get high attention weights while dissimilar ones get low attention weights. In the first stage, we introduce a residual attention module and a semantic-aware module to accurately predict candidate proposals. The two modules capture more interpretable features and introduce additional supervision through semantic-aware loss. In addition, we construct a dataset with a proportion of non-convex nuclei compared with existing nuclei datasets, namely the multi-shape nuclei (MsN) dataset. Our MSNSegNet method demonstrates notable improvements across various metrics compared to the second-highest-scoring methods. For all nuclei, the D i c e score improved by approximately 1.66 % , A J I by about 2.15 % , and D i c e obj by roughly 0.65 % . For non-convex nuclei, which are crucial in clinical applications, our method's A J I improved significantly by approximately 3.86 % and D i c e obj by around 2.54 % . These enhancements underscore the effectiveness of our approach on multi-shape nuclei segmentation, particularly in challenging scenarios involving irregularly shaped nuclei.
Asunto(s)
Núcleo Celular , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , AlgoritmosRESUMEN
PURPOSE: To construct a gadoxetic acid-enhanced MRI (EOB-MRI) -based multivariable model to predict Ki-67 expression levels in hepatocellular carcinoma (HCC) using LI-RADS v2018 imaging features. METHODS: A total of 121 patients with HCC who underwent EOB-MRI were enrolled in this study. The patients were divided into three groups according to Ki-67 cut-offs: Ki-67 ≥ 20% (n = 86) vs. Ki-67 < 20% (n = 35); Ki-67 ≥ 30% (n = 73) vs. Ki-67 < 30% (n = 48); Ki-67 ≥ 50% (n = 45) vs. Ki-67 < 50% (n = 76). MRI features were analyzed to be associated with high Ki-67 expression using logistic regression to construct multivariable models. The performance characteristic of the models for the prediction of high Ki-67 expression was assessed using receiver operating characteristic curves. RESULTS: The presence of mosaic architecture (p = 0.045), the presence of infiltrative appearance (p = 0.039), and the absence of targetoid hepatobiliary phase (HBP, p = 0.035) were independent differential factors for the prediction of high Ki-67 status (≥ 50% vs. < 50%) in HCC patients, while no features could predict high Ki-67 status with thresholds of 20% (≥ 20% vs. < 20%) and 30% (≥ 30% vs. < 30%) (p > 0.05). Four models were constructed including model A (mosaic architecture and infiltrated appearance), model B (mosaic architecture and targetoid HBP), model C (infiltrated appearance and targetoid HBP), and model D (mosaic architecture, infiltrated appearance and targetoid HBP). The model D yielded better diagnostic performance than the model C (0.776 vs. 0.669, p = 0.002), but a comparable AUC than model A (0.776 vs. 0.781, p = 0.855) and model B (0.776 vs. 0.746, p = 0.076). CONCLUSIONS: Mosaic architecture, infiltrated appearance and targetoid HBP were sensitive imaging features for predicting Ki-67 index ≥ 50% and EOB-MRI model based on LI-RADS v2018 features may be an effective imaging approach for the risk stratification of patients with HCC before surgery.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Antígeno Ki-67 , Medios de Contraste , Gadolinio DTPA , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
The synthesis of multielement composite oxide nanomaterials containing Ce, Zr, Y, and Yb was investigated using a micro confined jet mixer reactor operated in continuous mode under supercritical water conditions. The obtained nanoparticles were characterized using ICP-AES, SEM-EDS, FTIR, Raman spectroscopy, XRD, and TEM. All samples exhibited a uniform particle shape and a narrow particle size distribution. An analysis of the d-spacing results using selected electron area diffraction (SAED) patterns confirmed the production of cubic-phase crystals. A BET test was employed to determine the specific surface area of the prepared nanoparticles. OSC and TPR techniques were utilized to characterize the oxygen storage capacity and reduction performance of the obtained samples, with an analysis conducted to determine how the different proportions of elements affected the performance of multielement mixed oxides. The ionic conductivity of multielement composite oxide was measured using alternating current impedance spectroscopy (EIS), and the impact of Y, Ce, and Yb on the electrolyte material's ionic conductivity was analyzed.
RESUMEN
Assessing CD38 expression in vivo has become a significant element in multiple myeloma (MM) therapy, as it can be used to detect lesions and forecast the effectiveness of treatment. Accurate diagnosis requires a multifunctional, high-throughput probe screening platform to develop molecular probes for tumor-targeted multimodal imaging and treatment. Here, we investigated a microarray chip-based strategy for high-throughput screening of peptide probes for CD38. We obtained two new target peptides, CA-1 and CA-2, from a 105 peptide library with a dissociation constant (KD) of 10-7 M. The specificity and affinity of the target peptides were confirmed at the molecular and cellular levels. Peptide probes were labeled with indocyanine green (ICG) dye and 68Ga-DOTA, which were injected into a CD38-positive Ramos tumor-bearing mouse via its tail vein, and small animal fluorescence and positron emission tomography (PET) imaging showed that the peptide probes could show specific enrichment in the tumor tissue. Our study shows that a microchip-based screening of peptide probes can be used as a promising imaging tool for MM diagnosis.
Asunto(s)
Mieloma Múltiple , Ratones , Animales , Mieloma Múltiple/diagnóstico por imagen , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Péptidos/química , Imagen Multimodal/métodos , Radioisótopos de Galio/químicaRESUMEN
IMPORTANCE: Heat stress is one of the main causes of economic losses in the dairy industry worldwide; however, the mechanisms associated with the metabolic and microbial changes in heat stress remain unclear. Here, we characterized both the changes in metabolites, rumen microbial communities, and their functional potential indices derived from rumen fluid and serum samples from cows at different growth stages and under different climates. This study highlights that the rumen microbe may be involved in the regulation of lipid metabolism by modulating the fatty acyl metabolites. Under heat stress, the changes in the metabolic status of growing heifers, heifers, and lactating cows were closely related to arachidonic acid metabolism, fatty acid biosynthesis, and energy metabolism. Moreover, this study provides new markers for further research to understand the effects of heat stress on the physiological metabolism of Holstein cows and the time-dependent changes associated with growth stages.
Asunto(s)
Lactancia , Microbiota , Bovinos , Animales , Femenino , Lactancia/fisiología , Rumen , Metaboloma , Respuesta al Choque Térmico/fisiologíaRESUMEN
The recent focus on P(VDF-TrFE) material in biomedical engineering stems from its outstanding mechanical properties and biocompatibility. However, its application in sono-piezo dynamic therapy (SPDT) has been relatively unexplored. In this study, we developed composite piezoelectric nanoparticles (rPGd NPs@RGD) based on recrystallized P(VDF-TrFE) particles, which offer dual capabilities of MRI imaging and targeted treatment for brain gliomas. SEM observations of P(VDF-TrFE) particles in the disordered convolution region (DCR) revealed recrystallization, representing the polymer chain structure and particle polarity. In comparison to nonrecrystallized nanoparticles, rPGd NPs@RGD exhibited remarkable stability and biocompatibility. Under ultrasound excitation, they generated significantly higher levels of reactive oxygen species, effectively inhibiting tumor cell proliferation, invasion, and migration. rPGd NPs@RGD demonstrated excellent MRI imaging capabilities and antitumor activity in U87 tumor-bearing mice. This study highlights the remarkable SPDT abilities of the developed nanoparticles, attributed to the microscopic morphological changes in the DCR that increase the nanoparticle's polarity and thus boost its potential for SPDT. This research opens new possibilities for utilizing P(VDF-TrFE) materials in advanced biomedical applications.
Asunto(s)
Nanopartículas , Polivinilos , Ratones , Animales , Polivinilos/química , Ultrasonografía , OligopéptidosRESUMEN
Mitophagy modulators are proposed as potential therapeutic intervention that enhance neuronal health and brain homeostasis in Alzheimer's disease (AD). Nevertheless, the lack of specific mitophagy inducers, low efficacies, and the severe side effects of nonselective autophagy during AD treatment have hindered their application. In this study, the P@NB nanoscavenger is designed with a reactive-oxygen-species-responsive (ROS-responsive) poly(l-lactide-co-glycolide) core and a surface modified with the Beclin1 and angiopoietin-2 peptides. Notably, nicotinamide adenine dinucleotide (NAD+ ) and Beclin1, which act as mitophagy promoters, are quickly released from P@NB in the presence of high ROS levels in lesions to restore mitochondrial homeostasis and induce microglia polarization toward the M2-type, thereby enabling it to phagocytose amyloid-peptide (Aß). These studies demonstrate that P@NB accelerates Aß degradation and alleviates excessive inflammatory responses by restoring autophagic flux, which ameliorates cognitive impairment in AD mice. This multitarget strategy induces autophagy/mitophagy through synergy, thereby normalizing mitochondrial dysfunction. Therefore, the developed method provides a promising AD-therapy strategy.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitofagia , Péptidos beta-Amiloides/metabolismo , Beclina-1RESUMEN
Computational fluid dynamics (CFD) and population balance models (PBM) were coupled together for the first time to simulate the synthesis of zirconia nanoparticles in a continuous hydrothermal flow synthesis (CHFS) system with a self-designed confined impinging jet mixing (CJM) reactor. The hydrodynamic and thermodynamic behaviors within the CJM reactor strongly influenced the formation of the ZrO2 nanoparticles. Crucial parameters, such as velocities, temperatures, mixing conditions, and reaction rates, were analyzed under various supercritical conditions. Temperature and velocity measurements as functions of distance were also investigated. Normal particle size distribution (PSD) patterns were observed in all cases. The mean particle sizes in this study were calculated and compared using PBM aggregation analysis.
RESUMEN
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor and discuss its applicability for cavity optomechanics. The 88.5 nm thin stoichiometric silicon-nitride membrane, designed and fabricated to combine 2D-photonic and phononic crystal patterns, reaches reflectivities up to 99.89 % and a mechanical quality factor of 2.9 × 107 at room temperature. We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror. The optical beam shape in cavity transmission shows a stark deviation from a simple Gaussian mode-shape, consistent with theoretical predictions. We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature. At higher intracavity powers we observe an optomechanically induced optical bistability. The demonstrated device has potential to reach high cooperativities at low light levels desirable, for example, for optomechanical sensing and squeezing applications or fundamental studies in cavity quantum optomechanics; and meets the requirements for cooling to the quantum ground state of mechanical motion from room temperature.