Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 460: 132452, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683346

RESUMEN

In this study, we predicted the environmental fate of amide herbicides (AHs) using the EQC (EQuilibrium Criterion) model. We found that the soil phase is the main reservoir of AHs in the environment. Second, a toxicokinetic prediction indicated that butachlor have a low human health risk, while the alachlor, acetochlor, metolachlor, napropamide, and propanil are all uncertain. To address the environmental and human-health-related threats posed by AHs, 27 new proteins/enzymes that easily absorb, degrade, and mineralize AHs were designed. Compared with the target protein/enzyme, the comprehensive evaluation value of the new proteins/enzymes increased significantly: the absorption protein increased by 20.29-113.49%; the degradation enzyme increased by 151.26-425.22%; and the mineralization enzyme increased by 23.70-52.16%. Further experiments revealed that the remediating effect of 13 new proteins/enzymes could be significantly enhanced to facilitate their applicability under real environmental conditions. The hydrophobic interactions, van der Waals forces, and polar solvation are the key factors influencing plant-microorganism remediation. Finally, the simulations revealed that appropriate consumption of kiwifruit or simultaneous consumption of ginseng, carrot, and spinach, and avoiding the simultaneous consumption of maize and carrot/spinach are the most effective means reduce the risk of exhibiting AH-linked toxicity.


Asunto(s)
Herbicidas , Panax , Propanil , Humanos , Herbicidas/toxicidad , Amidas , Frutas
2.
World J Microbiol Biotechnol ; 39(8): 214, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256388

RESUMEN

Studying the straw lignocellulose strengthening mechanism during simultaneous degradation has important practical significance for improving resource utilization and reducing environmental pollution. In this paper, the degradation ability of four straw lignocellulose-degrading enzymes was evaluated by molecular docking and molecular dynamics. Using the significantly binds to straw lignocellulose-degrading enzyme as a template, a multifunctional lignocellulose-degrading enzyme 3CBH-1KS5-4XQD-1B85 was constructed based on amino acid recombination and homologous modeling. Five efficient degrading enzymes (3CBH-1, 3CBH-2, 3CBH-3, 3CBH-4, and 3CBH-5) were designed by site-directed mutagenesis of 3CBH-1KS5-4XQD-1B85 amino acid at position 346. Molecular dynamics showed that the degradation ability of 3CBH-1 was significant and it was 1.45 times higher than 3CBH-1KS5-4XQD-1B85. Moreover, the mechanism of enhanced degradability and the stability of the enzymes were explored. With the aid of Taguchi experiments, the suitable external environment for degrading straw was determined. In the presence of inhibitors (organic acids and phenolic compounds), the binding energy of 3CBH-1 (238.46 ± 30.96 kJ/mol) is 36.42% higher than that of 3CBH-1KS5-4XQD-1B85 (174.79 ± 20.35 kJ/mol) without external environmental stimulation. Based on homology modeling, this paper constructed a site-directed mutagenesis scheme of multifunctional enzymes, and the aim was to obtain multifunctional and efficient straw lignocellulose-degrading enzymes through protein engineering, which provided a feasible scheme for straw biodegradation.


Asunto(s)
Simulación de Dinámica Molecular , Enzimas Multifuncionales , Enzimas Multifuncionales/metabolismo , Simulación del Acoplamiento Molecular , Lignina/metabolismo , Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA