Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Foods ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998578

RESUMEN

Protein-based emulsion gels have tunable viscoelasticity that can be applied to improve the stability of bioactive ingredients. As the by-product of rice processing, rice bran protein (RBP) has high nutritional value and good digestibility, exhibiting unique value in the development of hypoallergenic formula. In this study, the effect of transglutaminase (TGase) cross-linking on the physicochemical properties of RBP emulsion gels was investigated. To improve the stability of curcumin against environmental stress, the entrapment efficiency and stability of curcumin in the emulsion gel systems were also evaluated. The results indicated that TGase increased the viscoelastic modulus of RBP emulsion gels, resulting in a solid-like structure. Moreover, the entrapment efficiency of curcumin was increased to 93.73% after adding TGase. The thermal stability and photo-stability of curcumin were enhanced to 79.54% and 85.87%, respectively, compared with the sample without TGase addition. The FTIR results showed that TGase induced the cross-linking of protein molecules and the secondary structure change in RBP. Additionally, SEM observation confirmed that the incorporation of TGase promoted the formation of a compact network structure. This study demonstrated the potential of RBP emulsion gels in protecting curcumin and might provide an alternative strategy to stabilize functional ingredients.

2.
Front Immunol ; 15: 1398310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835767

RESUMEN

Background: Hydroxytryptophan (5-HTP) can regulate the synthesis of 5-Hydroxytryptamine (5-HT) and melatonin (MT). In a previous metabolome analysis, we found that 5-HTP is an effective ingredient in yeast culture for regulating rumen fermentation. However, research on the effect of this microbial product (5-HTP) as a functional feed additive in sheep production is still not well explained. Therefore, this study examined the effects of 5-HTP on sheep rumen function and growth performance using in vitro and in vivo models. Methods: A two-factor in vitro experiment involving different 5-HTP doses and fermentation times was conducted. Then, in the in vivo experiment, 10 sheep were divided into a control group which was fed a basal diet, and a 5-HTP group supplemented with 8 mg/kg 5-HTP for 60 days. Results: The results showed that 5-HTP supplementation had a significant effect on in vitro DMD, pH, NH3-N, acetic acid, propionic acid, and TVFA concentrations. 5-HTP altered rumen bacteria composition and diversity indices including Chao1, Shannon, and Simpson. Moreover, the in vivo study on sheep confirmed that supplementing with 8 mg/kg of 5-HTP improved rumen fermentation efficiency and microbial composition. This led to enhanced sheep growth performance and increased involvement in the tryptophan metabolic pathway, suggesting potential benefits. Conclusion: Dietary 5-HTP (8 mg/kg DM) improves sheep growth performance by enhancing ruminal functions, antioxidant capacity, and tryptophan metabolism. This study can provide a foundation for the development of 5-HTP as a functional feed additive in ruminants' production.


Asunto(s)
5-Hidroxitriptófano , Alimentación Animal , Antioxidantes , Suplementos Dietéticos , Fermentación , Rumen , Triptófano , Animales , Rumen/metabolismo , Rumen/microbiología , Triptófano/metabolismo , 5-Hidroxitriptófano/farmacología , Ovinos , Antioxidantes/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Dieta/veterinaria
3.
Redox Biol ; 75: 103246, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38925041

RESUMEN

High levels of urinary lactate are an increased risk of progression in patients with diabetic kidney disease (DKD). However, it is still unveiled how lactate drive DKD. Epithelial-mesenchymal transition (EMT), which is characterized by the loss of epithelial cells polarity and cell-cell adhesion, and the acquisition of mesenchymal-like phenotypes, is widely recognized a critical contributor to DKD. Here, we found a switch from oxidative phosphorylation (OXPHOS) toward glycolysis in AGEs-induced renal tubular epithelial cells, thus leading to elevated levels of renal lactic acid. We demonstrated that reducing the lactate levels markedly delayed EMT progression and improved renal tubular fibrosis in DKD. Mechanically, we observed lactate increased the levels of histone H3 lysine 14 lactylation (H3K14la) in DKD. ChIP-seq & RNA-seq results showed histone lactylation contributed to EMT process by facilitating KLF5 expression. Moreover, KLF5 recognized the promotor of cdh1 and inhibited its transcription, which accelerated EMT of DKD. Additionally, nephro-specific knockdown and pharmacological inhibition of KLF5 diminished EMT development and attenuated DKD fibrosis. Thus, our study provides better understanding of epigenetic regulation of DKD pathogenesis, and new therapeutic strategy for DKD by disruption of the lactate-drived H3K14la/KLF5 pathway.

4.
J Agric Food Chem ; 72(26): 14912-14921, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913033

RESUMEN

Lipase from Rhizopus oryzae (ROL) exhibits remarkable sn-1,3 stereoselectivity and catalytic activity, but its poor thermostability limits its applications in the production of 1,3-dioleoyl-2-palmitoyl glycerol (OPO, a high-quality substitute for human milk fat). In this work, a semirational method was proposed to engineer the thermostability and catalytic activity of 4M (ROL mutant in our previous study). First, a computer-aided design is performed using 4M as a template, and N-glycosylation mutants are then recombinantly expressed and screened in Pichia pastoris, the optimal mutant N227 exhibited a half-life of 298.8 h at 45 °C, which is 7.23-folds longer than that of 4M. Its catalytic activity also reached 1043.80 ± 61.98 U/mg, representing a 29.2% increase compared to 4M (808.02 ± 47.02 U/mg). Molecular dynamics simulations of N227 suggested that the introduction of glycan enhanced the protein rigidity, while the strong hydrogen bonds formed between the glycan and the protein stabilized the lipase structure, thereby improving its thermostability. The acidolysis reaction between oleic acid (OA) and glycerol tripalmitate (PPP) was successfully carried out using immobilized N227, achieving a molar conversion rate of 90.2% for PPP. This engineering strategy guides the modification of lipases, while the glycomutants obtained in this study have potential applications in the biosynthesis of OPO.


Asunto(s)
Biocatálisis , Estabilidad de Enzimas , Proteínas Fúngicas , Lipasa , Rhizopus oryzae , Lipasa/química , Lipasa/genética , Lipasa/metabolismo , Glicosilación , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Rhizopus oryzae/enzimología , Rhizopus oryzae/genética , Rhizopus oryzae/química , Rhizopus oryzae/metabolismo , Calor , Cinética , Rhizopus/enzimología , Rhizopus/genética
5.
J Hazard Mater ; 474: 134827, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850953

RESUMEN

In our work, a gravity-driven ceramic membrane bioreactor (GDCMBR) was developed to remove Mn2+ and NH3-N simultaneously through the birnessite water purification layer in-situ construction on the ceramic membrane due to chemical pre-oxidation (powdered activated carbon (PAC)-MnOx). Considering the trade-off of biofouling and water production, the daily intermittent short-term vertical aeration mode was involving to balance this contradiction with the excellent water purification and improved membrane permeability. And the GDCMBR permeability of operation flux was improved for 5-7 LHM with intermittent short-term vertical aeration. Furthermore, only ∼7 % irreversible membrane resistance (Rir) also confirmed the improved membrane permeability with intermittent short-term vertical aeration. And some manganese oxidizing bacteria (MnOB) and ammonia oxidizing bacteria (AOB) species at genus level were identified during long-term operation with the contact circulating flowing raw water, resulting in the better Mn2+ and NH3-N removal efficiency. Additionally, the nano-flower-like birnessite water purification layer was verified in ceramsite@PAC-MnOx coupled GDCMBR, which evolute into a porous flake-like structure with the increasing intermittent short-term aeration duration. Therefore, the sustainable and effective intermittent short-term aeration mode in ceramsite@PAC-MnOx coupled GDCMBR could improve the membrane permeability with the satisfactory groundwater purification efficiency, as well as providing an energy-efficient strategy for membrane technologies applications in water supply safety.


Asunto(s)
Amoníaco , Cerámica , Manganeso , Membranas Artificiales , Permeabilidad , Cerámica/química , Manganeso/química , Amoníaco/química , Amoníaco/metabolismo , Purificación del Agua/métodos , Reactores Biológicos , Carbón Orgánico/química , Óxidos/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Nitrógeno/química , Nitrógeno/metabolismo , Compuestos de Manganeso/química , Gravitación , Bacterias/metabolismo
6.
Enzyme Microb Technol ; 179: 110472, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38889604

RESUMEN

Lipases play a vital role in various biological processes, from lipid metabolism to industrial applications. However, the ever-evolving challenges and diverse substrates necessitate the continual exploration of novel high-performance lipases. In this study, we employed an in silico mining approach to search for lipases with potential high sn-1,3 selectivity and catalytic activity. The identified novel lipase, PLL, from Paenibacillus larvae subsp. larvae B-3650 exhibited a specific activity of 111.2 ± 5.5 U/mg towards the substrate p-nitrophenyl palmitate (pNPP) and 6.9 ± 0.8 U/mg towards the substrate olive oil when expressed in Escherichia coli (E. coli). Computational design of cysteine mutations was employed to enhance the catalytic performance of PLL. Superior stability was achieved with the mutant K7C/A386C/H159C/K108C (2M3/2M4), showing an increase in melting temperature (Tm) by 1.9°C, a 2.05-fold prolonged half-life at 45°C, and no decrease in enzyme activity. Another mutant, K7C/A386C/A174C/A243C (2M1/2M3), showed a 4.9-fold enhancement in specific activity without compromising stability. Molecular dynamics simulations were conducted to explore the mechanisms of these two mutants. Mutant 2M3/2M4 forms putative disulfide bonds in the loop region, connecting the N- and C-termini of PLL, thus enhancing overall structural rigidity without impacting catalytic activity. The cysteines introduced in mutant 2M1/2M3 not only form new intramolecular hydrogen bonds but also alter the polarity and volume of the substrate-binding pocket, facilitating the entry of large substrate pNPP. These results highlight an efficient in silico exploration approach for novel lipases, offering a rapid and efficient method for enhancing catalytic performance through rational protein design.

7.
Food Chem ; 457: 140129, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908242

RESUMEN

In this study, chlorogenic acid (CA), piceatannol (PIC), epigallocatechin-3-gallate (EGCG) and ferulic acid (FA) was selected to explore the influence of polyphenol on the structural properties of wheat germ albumin (WGA) and wheat germ globulin (WGG). The emulsifying properties of the emulsions prepared by WGA-EGCG complex were also evaluated. The results indicated that all polyphenols could significantly enhance the antioxidant capacity of WGA and WGG. In particular, EGCG increased the ratio of random coil in WGA and WGG, resulting in protein unfolding and shifting from an order to disorder structure. In addition, lipid oxidation and protein oxidation of the soybean oil emulsion was significantly slowed down by WGA-EGCG. The stability of the emulsions under various environmental stress and the storage time was significantly improved by WGA-EGCG. These findings can provide a reference for expanding the application of wheat germ protein in food industry.

8.
Heliyon ; 10(10): e31450, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38831823

RESUMEN

Ethnopharmacological relevance: Tumour-derived extracellular vesicles (TEVs) have been confirmed to facilitate colorectal cancer (CRC) metastasis by remodelling the tumour microenvironment (TME). Drugs targeted TEVs is considered as a promising therapeutic strategy for cancer treatment. Traditional Chinese medicine (TCM) plays a vital role in improving the prognosis of CRC patients and eventually CRC patients with distant metastasis. Although the anti-tumour effects of active compounds from TCM prescriptions are observed widely, the molecular mechanisms remain unknown. Aim of the study: This study aims to investigate the effects of active compounds in our library of TCM on preventing CRC metastasis, and also explore the potential mechanisms from the perspective of TEVs. Materials and methods: The effects of active compounds on the proliferation of CRC cells were determined by CCK-8 assay. TEVs were extracted from MC38 cells by ultracentrifugation and characterized by electron microscopy, Nanosight NS300 and western blotting. The TEV particles were quantified by Nanosight NS300. The potential mechanism by which astragaloside IV (ASIV) reduced TEV secretion was determined by western blotting. RAW264.7 cells were cocultured with the conditioned medium (CM) of MC38 cells treated with or without ASIV, and the activation of tumour-associated macrophages (TAMs) was assessed by immunofluorescence and quantitative polymerase chain reaction (qPCR). The migration of CRC cells was measured by wound healing and Transwell assay. A spleen-to-liver metastasis model of colorectal cancer was used to confirm the efficiency of ASIV in vivo. Liver metastatic tumours of the mice were used for liver weight measures and H&E staining. Immunofluorescence was applied to observe the infiltration of TAMs, the expression of neutral sphingomyelinase 2 (nSMase2) and Rab27a. Results: By screening our TCM monomer library, we found that ASIV, which is mainly extracted from Radix Astragali, reduced the release of TEVs from CRC cells in a time- and concentration-dependent manner. Mechanistically, ASIV inhibited the production and secretion of TEVs by downregulating nSMase2 and Rab27a expression in CRC cells. CM from ASIV-treated CRC cells reshaped the polarization of TAMs by decreasing M2-type polarization, increasing M1-type polarization. Consequently, the repolarization of M2-type to M1-type macrophages led to reduced invasion and migration of CRC cells. Moreover, we confirmed that ASIV inhibited the liver metastasis of CRC, reduced M2-type macrophage infiltration and decreased the expression of nSMase2 and Rab27a in liver metastases. Conclusions: ASIV inhibited CRC metastasis by reducing EVs release and suppressing M2-type TAMs activation. All these findings reveal a new insight into the mechanisms of ASIV in preventing CRC progression and provide a promising approach for anti-tumour therapy.

9.
Angew Chem Int Ed Engl ; : e202409477, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877855

RESUMEN

Renal clearable nanoparticles have been drawing much attention as they can avoid prolonged accumulation in the body by efficiently clearing through the kidneys. While much effort has been made to understand their interactions within the kidneys, it remains unclear whether their transport could be influenced by other organs, such as the liver, which plays a crucial role in metabolizing and eliminating both endogenous and exogenous substances through various biotransformation processes. Here, by utilizing renal clearable IRDye800CW conjugated gold nanocluster (800CW4-GS18-Au25) as a model, we found that although 800CW4-GS18-Au25 strongly resisted serum-protein binding and exhibited minimal accumulation in the liver, its surface was still gradually modified by hepatic glutathione-mediated biotransformation when passing through the liver, resulting in the dissociation of IRDye800CW from Au25 and biotransformation-generated fingerprint message of 800CW4-GS18-Au25 in urine, which allowed us to facilely quantify its urinary biotransformation index (UBI) via urine chromatography analysis. Moreover, we observed the linear correlation between UBI and hepatic glutathione concentration, offering us a noninvasive method for quantitative detection of liver glutathione level through a simple urine test. Our discoveries would broaden the fundamental understanding of in vivo transport of nanoparticles and advance the development of urinary probes for noninvasive biodetection.

10.
Chembiochem ; 25(14): e202400285, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38752893

RESUMEN

ω-Transaminases (ω-TAs) are attractive biocatalysts asymmetrically catalyzing ketones to chiral amines. However, poor non-native catalytic activity and substrate promiscuity severely hamper its wide application in industrial production. Protein engineering efforts have generally focused on reshaping the substrate-binding pockets of ω-TAs. However, hotspots around the substrate tunnel as well as distant sites outside the pockets may also affect its activity. In this study, the ω-TA from Bacillus megaterium (BmeTA) was selected for engineering. The tunnel mutation Y164F synergy with distant mutation A245T which was acquired through a multiple sequence alignment showed improved soluble expression, a 3.7-fold higher specific activity and a 19.9-fold longer half-life at 45 °C. Molecule Dynamics simulation explains the mechanism of improved catalytic activity, enhanced thermostability and improved soluble expression of BmeTAY164F/A245T(2 M). Finally, the resting cells of 2 M were used for biocatalytic processes. 450 mM of S-methoxyisopropylamine (S-MOIPA) was obtained with an ee value of 97.3 % and a conversion rate of 90 %, laying the foundation for its industrial production. Mutant 2 M was also found to be more advantageous in catalyzing the transamination of various ketones. These results demonstrated that sites that are far away from the active center also play an important role in the redesign of ω-TAs.


Asunto(s)
Aminas , Bacillus megaterium , Transaminasas , Bacillus megaterium/enzimología , Transaminasas/metabolismo , Transaminasas/genética , Transaminasas/química , Aminas/química , Aminas/metabolismo , Ingeniería de Proteínas , Biocatálisis , Estereoisomerismo , Simulación de Dinámica Molecular , Especificidad por Sustrato , Secuencia de Aminoácidos
11.
Toxicol Lett ; 397: 34-41, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734219

RESUMEN

Humantenmine, koumine, and gelsemine are three indole alkaloids found in the highly toxic plant Gelsemium. Humantenmine was the most toxic, followed by gelsemine and koumine. The aim of this study was to investigate and analyze the effects of these three substances on tissue distribution and toxicity in mice pretreated with the Cytochrome P450 3A4 (CYP3A4) inducer ketoconazole and the inhibitor rifampicin. The in vivo test results showed that the three alkaloids were absorbed rapidly and had the ability to penetrate the blood-brain barrier. At 5 min after intraperitoneal injection, the three alkaloids were widely distributed in various tissues and organs, the spleen and pancreas were the most distributed, and the content of all tissues decreased significantly at 20 min. Induction or inhibition of CYP3A4 in vivo can regulate the distribution and elimination effects of the three alkaloids in various tissues and organs. Additionally, induction of CYP3A4 can reduce the toxicity of humantenmine, and vice versa. Changes in CYP3A4 levels may account for the difference in toxicity of humantenmine. These findings provide a reliable and detailed dataset for drug interactions, tissue distribution, and toxicity studies of Gelsemium alkaloids.


Asunto(s)
Citocromo P-450 CYP3A , Gelsemium , Alcaloides Indólicos , Animales , Gelsemium/química , Citocromo P-450 CYP3A/metabolismo , Alcaloides Indólicos/toxicidad , Distribución Tisular , Masculino , Ratones , Cetoconazol/toxicidad , Cetoconazol/farmacología , Inductores del Citocromo P-450 CYP3A/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Inhibidores del Citocromo P-450 CYP3A/farmacología , Alcaloides
12.
Int J Biol Macromol ; 270(Pt 1): 132026, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704074

RESUMEN

Multiple phenolic substances have been shown to promote SIRT3 expression, however, few studies have focused on the effects of these phenolics on SIRT3 enzyme activity. This study constructed a variety of reaction systems to elucidate the mechanisms by which different polyphenols affect SIRT3 enzyme activity. The results showed that acP53317-320 was the most suitable substrate among the five acetylated peptide substrates (Kcat/Km = 74.85 ± 1.86 M-1•s-1). All the phenolic compounds involved in the experiment inhibited the enzymatic activity of SIRT3, and the lowest IC50 among them was quercetin (0.12 ± 0.01 mM) and the highest was piceatannol (1.29 ± 0.08 mM). Their inhibition types were mainly competitive and mixed. In addition, piceatannol was found to be a natural SIRT3 agonist by enzyme kinetic analysis and validation of deacetylation efficiency. This study will provide a useful reference for polyphenol modulation of SIRT3 dosage, as well as the development and application of polyphenol-based SIRT3 activators and agonists.


Asunto(s)
Polifenoles , Sirtuina 3 , Sirtuina 3/metabolismo , Polifenoles/farmacología , Polifenoles/química , Acetilación , Humanos , Cinética , Estilbenos/farmacología , Estilbenos/química
13.
Mol Nutr Food Res ; : e2300917, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778506

RESUMEN

SCOPE: High-fat diet induced circadian rhythm disorders (CRD) are associated with metabolic diseases. As the main functional bioactive component in oat, ß-glucan (GLU) can improve metabolic disorders, however its regulatory effect on CRD remains unclear. In this research, the effects of GLU on high-fat diet induced insulin resistance and its mechanisms are investigated, especially focusing on circadian rhythm-related process. METHODS AND RESULTS: Male C57BL/6 mice are fed a low fat diet, a high-fat diet (HFD), and HFD supplemented 3% GLU for 13 weeks. The results show that GLU treatment alleviates HFD-induced insulin resistance and intestinal barrier dysfunction in obese mice. The rhythmic expressions of circadian clock genes (Bmal1, Clock, and Cry1) in the colon impaired by HFD diet are also restored by GLU. Further analysis shows that GLU treatment restores the oscillatory nature of gut microbiome, which can enhance glucagon-like peptide (GLP-1) secretion via short-chain fatty acids (SCFAs) mediated activation of G protein-coupled receptors (GPCRs). Meanwhile, GLU consumption significantly relieves colonic inflammation and insulin resistance through modulating HDAC3/NF-κB signaling pathway. CONCLUSION: GLU can ameliorate insulin resistance due to its regulation of colonic circadian clock and gut microbiome.

14.
Sci Rep ; 14(1): 11794, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782963

RESUMEN

We present the Manatee variational autoencoder model to predict transcription factor (TF) perturbation-induced transcriptomes. We demonstrate that the Manatee in silico perturbation analysis recapitulates target transcriptomic phenotypes in diverse cellular lineage transitions. We further propose the Manatee in silico screening analysis for prioritizing TF combinations targeting desired transcriptomic phenotypes.


Asunto(s)
Factores de Transcripción , Transcriptoma , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Perfilación de la Expresión Génica , Simulación por Computador , Biología Computacional/métodos , Algoritmos
15.
J Ethnopharmacol ; 331: 118277, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697407

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY: To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS: A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS: MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION: MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Femenino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Persona de Mediana Edad , Masculino , Línea Celular Tumoral , Anciano , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Adulto , Farmacología en Red
16.
Invest Ophthalmol Vis Sci ; 65(5): 17, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717424

RESUMEN

Purpose: We aimed to identify structural differences in normal eyes, early age-related macular degeneration (AMD), and intermediate AMD eyes using optical coherence tomography (OCT) in a well-characterized, large cross-sectional cohort. Methods: Subjects ≥ 60 years with healthy normal eyes, as well as early or intermediate AMD were enrolled in the Alabama Study on Age-related Macular Degeneration 2 (ALSTAR2; NCT04112667). Using Spectralis HRA + OCT2, we obtained macular volumes for each participant. An auto-segmentation software was used to segment six layers and sublayers: photoreceptor inner and outer segments, subretinal drusenoid deposits (SDDs), retinal pigment epithelium + basal lamina (RPE + BL), drusen, and choroid. After manually refining the segmentations of all B-scans, mean thicknesses in whole, central, inner and outer rings of the ETDRS grid were calculated and compared among groups. Results: This study involved 502 patients, 252 were healthy, 147 had early AMD, and 103 had intermediate AMD eyes (per Age-Related Eye Disease Study [AREDS] 9-step). Intermediate AMD eyes exhibited thicker SDD and drusen, thinner photoreceptor inner segments, and RPE compared to healthy and early AMD eyes. They also had thicker photoreceptor outer segments than early AMD eyes. Early AMD eyes had thinner photoreceptor outer segments than normal eyes but a thicker choroid than intermediate AMD eyes. Using the Beckman scale, 42% of the eyes initially classified as early AMD shifted to intermediate AMD, making thickness differences for photoreceptor outer segments and choroid insignificant. Conclusions: With AMD stages, the most consistent structural differences involve appearance of drusen and SDD, followed by RPE + BL thickness, and then thickness of photoreceptor inner and outer segments. Structural changes in the transition from aging to intermediate AMD include alterations in the outer retinal bands, including the appearance of deposits on either side of the RPE.


Asunto(s)
Coroides , Degeneración Macular , Drusas Retinianas , Epitelio Pigmentado de la Retina , Tomografía de Coherencia Óptica , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Coroides/patología , Coroides/diagnóstico por imagen , Estudios Transversales , Degeneración Macular/diagnóstico , Drusas Retinianas/diagnóstico , Segmento Externo de las Células Fotorreceptoras Retinianas/patología , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Agudeza Visual/fisiología
17.
Int J Biol Macromol ; 269(Pt 2): 132102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729465

RESUMEN

Optically pure 1,2,3,4-tetrahydroquinolines (THQs) represent a class of important motifs in many natural products and pharmaceutical agents. While recent advances on redox biocatalysis have demonstrated the great potential of amine oxidases, all the transformations focused on 2-substituted THQs. The corresponding biocatalytic method for the preparation of chiral 4-substituted THQs is still challenging due to the poor activity and stereoselectivity of the available enzyme. Herein, we developed a biocatalytic kinetic resolution approach for enantiodivergent synthesis of 4-phenyl- or alkyl-substituted THQs. Through structure-guided protein engineering of cyclohexylamine oxidase derived from Brevibacterium oxidans IH-35 A (CHAO), the variant of CHAO (Y215H/Y214S) displayed improved specific activity toward model substrate 4-phenyl substituted THQ (0.14 U/mg, 13-fold higher than wild-type CHAO) with superior (R)-stereoselectivity (E > 200). Molecular dynamics simulations show that CHAO Y215H/Y214S allows a suitable substrate positioning in the expanded binding pocket to be facilely accessed, enabling enhanced activity and stereoselectivity. Furthermore, a series of 4-alkyl-substituted THQs can be transformed by CHAO Y215H/Y214S, affording R-isomers with good yields (up to 50 %) and excellent enantioselectivity (up to ee > 99 %). Interestingly, the monoamine oxidase from Pseudomonas fluorescens Pf0-1 (PfMAO1) with opposite enantioselectivity was also mined. Together, this system enriches the kinetic resolution methods for the synthesis of chiral THQs.


Asunto(s)
Quinolinas , Cinética , Estereoisomerismo , Quinolinas/química , Biocatálisis , Brevibacterium/enzimología , Especificidad por Sustrato , Simulación de Dinámica Molecular , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química
18.
Angew Chem Int Ed Engl ; 63(24): e202405139, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38588277

RESUMEN

It remains challenging to comprehensively understand the packing models of conjugated polymers, in which side chains play extremely critical roles. The side chains are typically flexible and non-conductive and are widely used to improve the polymer solubility in organic solutions. Herein, a buffer chain model is proposed to describe link between conjugated backbone and side chains for understanding the relationship of crystallization competition of conductive conjugated backbones and non-conductive side chains. A longer buffer chain is beneficial for alleviating such crystallization competition and further promoting the spontaneous packing of conjugated backbones, resulting in enhanced charge transport properties. Our results provide a novel concept for designing conjugated polymers towards ordered organization and enhanced electronic properties and highlight the importance of balancing the competitive interactions between different parts of conjugated polymers.

19.
J Colloid Interface Sci ; 667: 199-211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636222

RESUMEN

The catalytic performance of immobilized lipase is greatly influenced by functional support, which attracts growing interest for designing supports to achieve their promotive catalytic activity. Many lipases bind strongly to hydrophobic surfaces where they undergo interfacial activation. Herein, the behavioral differences of lipases with distinct lid structures on interfaces of varying hydrophobicity levels were firstly investigated by molecular simulations. It was found that a reasonable hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation. Building on these findings, a novel "nest"-like superhydrophobic ZIFs (ZIFN) composed of hydrophobic ligands was prepared for the first time and used to immobilize lipase from Aspergillus oryzae (AOL@ZIFN). The AOL@ZIFN exhibited 2.0-folds higher activity than free lipase in the hydrolysis of p-Nitrophenyl palmitate (p-NPP). Especially, the modification of superhydrophobic ZIFN with an appropriate amount of hydrophilic tannic acid can significantly improve the activity of the immobilized lipase (AOL@ZIFN-TA). The AOL@ZIFN-TA exhibited 30-folds higher activity than free lipase, and still maintained 82% of its initial activity after 5 consecutive cycles, indicating good reusability. These results demonstrated that nanomaterials with rational arrangement of the hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation and improve its activity, displaying the potential of the extensive application.


Asunto(s)
Enzimas Inmovilizadas , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa , Propiedades de Superficie , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Aspergillus oryzae/enzimología , Simulación de Dinámica Molecular , Hidrólisis , Nanoestructuras/química , Tamaño de la Partícula
20.
Small ; : e2400866, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639306

RESUMEN

The scarcity of Te hampers the widespread use of Bi2Te3-based thermoelectric modules. Here, the thermoelectric module potential of PbSe is investigated by improving its carrier mobility. Initially, large PbSe crystals are grown with the temperature gradient method to mitigate grain boundary effects on carrier transport. Subsequently, light doping with <1mole‰ halogens (Cl/Br/I) increases room-temperature carrier mobility to ~1600 cm2 V-1 s-1, achieved by reducing carrier concentration compared to traditional heavy doping. Crystal growth design and light doping enhance carrier mobility without affecting effective mass, resulting in a high power factor ~40 µW cm-1 K-2 in PbSe-Cl/Br/I crystals at 300 K. Additionally, Cl/Br/I doping reduces thermal conductivity and bipolar diffusion, leading to significantly lower thermal conductivity at high temperature. Enhanced carrier mobility and suppressed bipolar effect boost ZT values across the entire temperature range in n-type PbSe-Cl/Br/I crystals. Specifically, ZT values of PbSe-Br crystal reach ~0.6 at 300 K, ~1.2 at 773 K, and the average ZT (ZTave) reaches ~1.0 at 300-773 K. Ultimately, ~5.8% power generation efficiency in a PbSe single leg with a maximum temperature cooling difference of 40 K with 7-pair modules is achieved. These results indicate the potential for cost-effective and high-performance thermoelectric cooling modules based on PbSe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...