Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Res ; 130(1): 27-44, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34814703

RESUMEN

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS: A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS: Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS: AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Animales , Sitios de Unión , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Células Cultivadas , Células HEK293 , Humanos , Miocitos Cardíacos/metabolismo , Unión Proteica , Ratas , Ratas Wistar
2.
Front Pharmacol ; 12: 638646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163352

RESUMEN

The cardiac sodium-calcium exchanger (NCX1) is important for normal Na+- and Ca2+-homeostasis and cardiomyocyte relaxation and contraction. It has been suggested that NCX1 activity is reduced by phosphorylated phospholemman (pSer68-PLM); however its direct interaction with PLM is debated. Disruption of the potentially inhibitory pSer68-PLM-NCX1 interaction might be a therapeutic strategy to increase NCX1 activity in cardiac disease. In the present study, we aimed to analyze the binding affinities and kinetics of the PLM-NCX1 and pSer68-PLM-NCX1 interactions by surface plasmon resonance (SPR) and to develop a proteolytically stable NCX1 activator peptide for future in vivo studies. The cytoplasmic parts of PLM (PLMcyt) and pSer68-PLM (pSer68-PLMcyt) were found to bind strongly to the intracellular loop of NCX1 (NCX1cyt) with similar K D values of 4.1 ± 1.0 nM and 4.3 ± 1.9 nM, but the PLMcyt-NCX1cyt interaction showed higher on/off rates. To develop a proteolytically stable NCX1 activator, we took advantage of a previously designed, high-affinity PLM binding peptide (OPT) that was derived from the PLM binding region in NCX1 and that reverses the inhibitory PLM (S68D)-NCX1 interaction in HEK293. We performed N- and C-terminal truncations of OPT and identified PYKEIEQLIELANYQV as the minimum sequence required for pSer68-PLM binding. To increase peptide stability in human serum, we replaced the proline with an N-methyl-proline (NOPT) after identification of N-terminus as substitution tolerant by two-dimensional peptide array analysis. Mass spectrometry analysis revealed that the half-life of NOPT was increased 17-fold from that of OPT. NOPT pulled down endogenous PLM from rat left ventricle lysate and exhibited direct pSer68-PLM binding in an ELISA-based assay and bound to pSer68-PLMcyt with a K D of 129 nM. Excess NOPT also reduced the PLMcyt-NCX1cyt interaction in an ELISA-based competition assay, but in line with that NCX1 and PLM form oligomers, NOPT was not able to outcompete the physical interaction between endogenous full length proteins. Importantly, cell-permeable NOPT-TAT increased NCX1 activity in cardiomyocytes isolated from both SHAM-operated and aorta banded heart failure (HF) mice, indicating that NOPT disrupted the inhibitory pSer68-PLM-NCX1 interaction. In conclusion, we have developed a proteolytically stable NCX1-derived PLM binding peptide that upregulates NCX1 activity in SHAM and HF cardiomyocytes.

3.
Cardiovasc Res ; 116(1): 78-90, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30949686

RESUMEN

AIMS: Ankyrin B (AnkB) is an adaptor protein that assembles Na+/K+-ATPase (NKA) and Na+/Ca2+ exchanger (NCX) in the AnkB macromolecular complex. Loss-of-function mutations in AnkB cause the AnkB syndrome in humans, characterized by ventricular arrhythmias and sudden cardiac death. It is unclear to what extent NKA binding to AnkB allows regulation of local Na+ and Ca2+ domains and hence NCX activity. METHODS AND RESULTS: To investigate the role of NKA binding to AnkB in cardiomyocytes, we synthesized a disruptor peptide (MAB peptide) and its AnkB binding ability was verified by pulldown experiments. As opposed to control, the correlation between NKA and NCX currents was abolished in adult rat ventricular myocytes dialyzed with MAB peptide, as well as in cardiomyocytes from AnkB+/- mice. Disruption of NKA from AnkB (with MAB peptide) increased NCX-sensed cytosolic Na+ concentration, reduced Ca2+ extrusion through NCX, and increased frequency of Ca2+ sparks and Ca2+ waves without concomitant increase in Ca2+ transient amplitude or SR Ca2+ load, suggesting an effect in local Ca2+ domains. Selective inhibition of the NKAα2 isoform abolished both the correlation between NKA and NCX currents and the increased rate of Ca2+ sparks and waves following NKA/AnkB disruption, suggesting that an AnkB/NKAα2/NCX domain controls Ca2+ fluxes in cardiomyocytes. CONCLUSION: NKA binding to AnkB allows ion regulation in a local domain, and acute disruption of the NKA/AnkB interaction using disruptor peptides lead to increased rate of Ca2+ sparks and waves. The functional effects were mediated through the NKAα2 isoform. Disruption of the AnkB/NKA/NCX domain could be an important pathophysiological mechanism in the AnkB syndrome.


Asunto(s)
Ancirinas/metabolismo , Señalización del Calcio , Miocitos Cardíacos/enzimología , Intercambiador de Sodio-Calcio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Ancirinas/deficiencia , Ancirinas/genética , Acoplamiento Excitación-Contracción , Masculino , Potenciales de la Membrana , Ratones Noqueados , Contracción Miocárdica , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas Wistar , Factores de Tiempo
4.
Proteomics ; 17(17-18)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28755400

RESUMEN

The sodium (Na+ )-calcium (Ca2+ ) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end-stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti-NCX1 against endogenous NCX1 and (2) anti-His (where His is histidine) with His-trigger factor-NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein-protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where "cell communication" and "signal transduction" formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in "cardiovascular disease" which can be explored as novel drug targets in future research.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Corazón/fisiología , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Intercambiador de Sodio-Calcio/metabolismo , Animales , Calcio/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Ratas , Ratas Wistar , Transducción de Señal , Sodio/metabolismo
5.
Nucleic Acids Res ; 45(13): 7681-7696, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28472346

RESUMEN

The transcription factor c-Myb is involved in early differentiation and proliferation of haematopoietic cells, where it operates as a regulator of self-renewal and multi-lineage differentiation. Deregulated c-Myb plays critical roles in leukaemias and other human cancers. Due to its role as a master regulator, we hypothesized it might function as a pioneer transcription factor. Our approach to test this was to analyse a mutant of c-Myb, D152V, previously reported to cause haematopoietic defects in mice by an unknown mechanism. Our transcriptome data from K562 cells indicates that this mutation specifically affects c-Myb's ability to regulate genes involved in differentiation, causing failure in c-Myb's ability to block differentiation. Furthermore, we see a major effect of this mutation in assays where chromatin opening is involved. We show that each repeat in the minimal DNA-binding domain of c-Myb binds to histones and that D152V disrupts histone binding of the third repeat. ATAC-seq data indicates this mutation impairs the ability of c-Myb to cause chromatin opening at specific sites. Taken together, our findings support that c-Myb acts as a pioneer factor and show that D152V impairs this function. The D152V mutant is the first mutant of a transcription factor specifically destroying pioneer factor function.


Asunto(s)
Diferenciación Celular/genética , Genes myb , Histonas/metabolismo , Mutación , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Sustitución de Aminoácidos , Animales , Cromatina/genética , Cromatina/metabolismo , Eritropoyesis/genética , Técnicas de Silenciamiento del Gen , Humanos , Células K562 , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas c-myb/química
6.
Brain ; 140(5): 1280-1299, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334907

RESUMEN

Ataxin-3, the disease protein in Machado-Joseph disease, is known to be proteolytically modified by various enzymes including two major families of proteases, caspases and calpains. This processing results in the generation of toxic fragments of the polyglutamine-expanded protein. Although various approaches were undertaken to identify cleavage sites within ataxin-3 and to evaluate the impact of fragments on the molecular pathogenesis of Machado-Joseph disease, calpain-mediated cleavage of the disease protein and the localization of cleavage sites remained unclear. Here, we report on the first precise localization of calpain cleavage sites in ataxin-3 and on the characterization of the resulting breakdown products. After confirming the occurrence of calpain-derived fragmentation of ataxin-3 in patient-derived cell lines and post-mortem brain tissue, we combined in silico prediction tools, western blot analysis, mass spectrometry, and peptide overlay assays to identify calpain cleavage sites. We found that ataxin-3 is primarily cleaved at two sites, namely at amino acid positions D208 and S256 and mutating amino acids at both cleavage sites to tryptophan nearly abolished ataxin-3 fragmentation. Furthermore, analysis of calpain cleavage-derived fragments showed distinct aggregation propensities and toxicities of C-terminal polyglutamine-containing breakdown products. Our data elucidate the important role of ataxin-3 proteolysis in the pathogenesis of Machado-Joseph disease and further emphasize the relevance of targeting this disease pathway as a treatment strategy in neurodegenerative disorders.


Asunto(s)
Ataxina-3/metabolismo , Calpaína/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Técnicas Químicas Combinatorias , Simulación por Computador , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Péptido Hidrolasas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Transfección
7.
Biochem J ; 473(15): 2413-23, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27247424

RESUMEN

NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer(68)-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer(68)-PLM-NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1-PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer(68)-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser(68).


Asunto(s)
Proteínas de la Membrana/farmacología , Péptidos/farmacología , Fosfoproteínas/farmacología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Animales , Sitios de Unión , Encéfalo/metabolismo , Células HEK293 , Humanos , Miocardio/metabolismo , Fosforilación , Ratas , Intercambiador de Sodio-Calcio/metabolismo
8.
J Biol Chem ; 291(9): 4561-79, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26668322

RESUMEN

The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatasa 1/metabolismo , Procesamiento Proteico-Postraduccional , Intercambiador de Sodio-Calcio/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Biología Computacional , Células HEK293 , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Ratas Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Intercambiador de Sodio-Calcio/química , Intercambiador de Sodio-Calcio/genética , Especificidad por Sustrato
9.
J Biol Chem ; 289(49): 33984-98, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25336645

RESUMEN

Cardiac sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is central to the maintenance of normal Ca(2+) homeostasis and contraction. Studies indicate that the Ca(2+)-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca(2+) binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met(369) antibody identified a novel calpain cleavage site at Met(369). Engineering NCX1-Met(369) into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met(369) inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met(369) cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Calpaína/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Anciano , Secuencia de Aminoácidos , Animales , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , Sitios de Unión , Calpaína/genética , Femenino , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Humanos , Masculino , Datos de Secuencia Molecular , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Cultivo Primario de Células , Unión Proteica , Proteolisis , Ratas , Ratas Wistar , Intercambiador de Sodio-Calcio/química , Intercambiador de Sodio-Calcio/genética
10.
Am J Physiol Cell Physiol ; 300(5): C989-97, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21289289

RESUMEN

The cardiac Na(+)/Ca(2+) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis and cardiac function. Several studies have indicated that NCX1 is phosphorylated by the cAMP-dependent protein kinase A (PKA) in vitro, which increases its activity. However, this finding is controversial and no phosphorylation site has so far been identified. Using bioinformatic analysis and peptide arrays, we screened NCX1 for putative PKA phosphorylation sites. Although several NCX1 synthetic peptides were phosphorylated by PKA in vitro, only one PKA site (threonine 731) was identified after mutational analysis. To further examine whether NCX1 protein could be PKA phosphorylated, wild-type and alanine-substituted NCX1-green fluorescent protein (GFP)-fusion proteins expressed in human embryonic kidney (HEK)293 cells were generated. No phosphorylation of full-length or calpain- or caspase-3 digested NCX1-GFP was observed with purified PKA-C and [γ-(32)P]ATP. Immunoblotting experiments with anti-PKA substrate and phosphothreonine-specific antibodies were further performed to investigate phosphorylation of endogenous NCX1. Phospho-NCX1 levels were also not increased after forskolin or isoproterenol treatment in vivo, in isolated neonatal cardiomyocytes, or in total heart homogenate. These data indicate that the novel in vitro PKA phosphorylation site is inaccessible in full-length as well as in calpain- or caspase-3 digested NCX1 protein, suggesting that NCX1 is not a direct target for PKA phosphorylation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocardio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Agonistas Adrenérgicos beta/farmacología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Colforsina/farmacología , Biología Computacional/métodos , Células HEK293 , Corazón/efectos de los fármacos , Humanos , Isoproterenol/farmacología , Ratones , Datos de Secuencia Molecular , Fosforilación , Ratas , Homología de Secuencia de Aminoácido , Intercambiador de Sodio-Calcio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...