Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(10): 6926-6935, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38430200

RESUMEN

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.


Asunto(s)
ADN , G-Cuádruplex , Humanos , Ligandos , ADN/química , Oligonucleótidos
2.
J Med Chem ; 67(3): 2202-2219, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38241609

RESUMEN

G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.


Asunto(s)
ADN , G-Cuádruplex , Ligandos , Electricidad Estática , ADN/metabolismo , Regiones Promotoras Genéticas
3.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37511298

RESUMEN

Antibiotics inhibit breast cancer stem cells (CSCs) by suppressing mitochondrial biogenesis. However, the effectiveness of antibiotics in clinical settings is inconsistent. This inconsistency raises the question of whether the tumor microenvironment, particularly hypoxia, plays a role in the response to antibiotics. Therefore, the goal of this study was to evaluate the effectiveness of five commonly used antibiotics for inhibiting CSCs under hypoxia using an MCF-7 cell line model. We assessed the number of CSCs through the mammosphere formation assay and aldehyde dehydrogenase (ALDH)-bright cell count. Additionally, we examined the impact of antibiotics on the mitochondrial stress response and membrane potential. Furthermore, we analyzed the levels of proteins associated with therapeutic resistance. There was no significant difference in the number of CSCs between cells cultured under normoxic and hypoxic conditions. However, hypoxia did affect the rate of CSC inhibition by antibiotics. Specifically, azithromycin was unable to inhibit sphere formation in hypoxia. Erythromycin and doxycycline did not reduce the ratio of ALDH-bright cells, despite decreasing the number of mammospheres. Furthermore, treatment with chloramphenicol, doxycycline, and tetracycline led to the overexpression of the breast cancer resistance protein. Our findings suggest that hypoxia may weaken the inhibitory effects of antibiotics on the breast cancer model.


Asunto(s)
Antibacterianos , Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Antibacterianos/farmacología , Antibacterianos/metabolismo , Doxiciclina/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Neoplasias/metabolismo , Aldehído Deshidrogenasa/metabolismo , Hipoxia/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
4.
Nucleic Acids Res ; 51(14): 7392-7408, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37351621

RESUMEN

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.


Asunto(s)
ADN Mitocondrial , G-Cuádruplex , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Replicación del ADN/genética
5.
Methods Mol Biol ; 2615: 203-217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807794

RESUMEN

Faithful mitochondrial DNA (mtDNA) replication is critical for the proper function of the oxidative phosphorylation system. Problems with mtDNA maintenance, such as replication stalling upon encountering DNA damage, impair this vital function and can potentially lead to disease. An in vitro reconstituted mtDNA replication system can be used to investigate how the mtDNA replisome deals with, for example, oxidatively or UV-damaged DNA. In this chapter, we provide a detailed protocol on how to study the bypass of different types of DNA damage using a rolling circle replication assay. The assay takes advantage of purified recombinant proteins and can be adapted to the examination of various aspects of mtDNA maintenance.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Daño del ADN
6.
Chem Sci ; 13(8): 2347-2354, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35310480

RESUMEN

G-quadruplex (G4) DNA structures are implicated in central biological processes and are considered promising therapeutic targets because of their links to human diseases such as cancer. However, functional details of how, when, and why G4 DNA structures form in vivo are largely missing leaving a knowledge gap that requires tailored chemical biology studies in relevant live-cell model systems. Towards this end, we developed a synthetic platform to generate complementary chemical probes centered around one of the most effective and selective G4 stabilizing compounds, Phen-DC3. We used a structure-based design and substantial synthetic devlopments to equip Phen-DC3 with an amine in a position that does not interfere with G4 interactions. We next used this reactive handle to conjugate a BODIPY fluorophore to Phen-DC3. This generated a fluorescent derivative with retained G4 selectivity, G4 stabilization, and cellular effect that revealed the localization and function of Phen-DC3 in human cells. To increase cellular uptake, a second chemical probe with a conjugated cell-penetrating peptide was prepared using the same amine-substituted Phen-DC3 derivative. The cell-penetrating peptide conjugation, while retaining G4 selectivity and stabilization, increased nuclear localization and cellular effects, showcasing the potential of this method to modulate and direct cellular uptake e.g. as delivery vehicles. The applied approach to generate multiple tailored biochemical tools based on the same core structure can thus be used to advance the studies of G4 biology to uncover molecular details and therapeutic approaches.

7.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119167, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34744028

RESUMEN

Two classes of replication intermediates have been observed from mitochondrial DNA (mtDNA) in many mammalian tissue and cells with two-dimensional agarose gel electrophoresis. One is assigned to leading-strand synthesis in the absence of synchronous lagging-strand synthesis (strand-asynchronous replication), and the other has properties of coupled leading- and lagging-strand synthesis (strand-coupled replication). While strand-asynchronous replication is primed by long noncoding RNA synthesized from a defined transcription initiation site, little is known about the commencement of strand-coupled replication. To investigate it, we attempted to abolish strand-asynchronous replication in cultured human cybrid cells by knocking out the components of the transcription initiation complexes, mitochondrial transcription factor B2 (TFB2M/mtTFB2) and mitochondrial RNA polymerase (POLRMT/mtRNAP). Unexpectedly, removal of either protein resulted in complete mtDNA loss, demonstrating for the first time that TFB2M and POLRMT are indispensable for the maintenance of human mtDNA. Moreover, a lack of TFB2M could not be compensated for by mitochondrial transcription factor B1 (TFB1M/mtTFB1). These findings indicate that TFB2M and POLRMT are crucial for the priming of not only strand-asynchronous but also strand-coupled replication, providing deeper insights into the molecular basis of mtDNA replication initiation.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Metiltransferasas/metabolismo , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Células HEK293 , Células HeLa , Humanos , Metiltransferasas/genética , Proteínas Mitocondriales/genética , Factores de Transcripción/genética
8.
Nucleic Acids Res ; 49(14): 8199-8213, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34302490

RESUMEN

PrimPol is the second primase in human cells, the first with the ability to start DNA chains with dNTPs. PrimPol contributes to DNA damage tolerance by restarting DNA synthesis beyond stalling lesions, acting as a TLS primase. Multiple alignment of eukaryotic PrimPols allowed us to identify a highly conserved motif, WxxY near the invariant motif A, which contains two active site metal ligands in all members of the archeo-eukaryotic primase (AEP) superfamily. In vivo and in vitro analysis of single variants of the WFYY motif of human PrimPol demonstrated that the invariant Trp87 and Tyr90 residues are essential for both primase and polymerase activities, mainly due to their crucial role in binding incoming nucleotides. Accordingly, the human variant F88L, altering the WFYY motif, displayed reduced binding of incoming nucleotides, affecting its primase/polymerase activities especially during TLS reactions on UV-damaged DNA. Conversely, the Y89D mutation initially associated with High Myopia did not affect the ability to rescue stalled replication forks in human cells. Collectively, our data suggest that the WFYY motif has a fundamental role in stabilizing the incoming 3'-nucleotide, an essential requisite for both its primase and TLS abilities during replication fork restart.


Asunto(s)
ADN Primasa/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Enzimas Multifuncionales/genética , Secuencias de Aminoácidos/genética , ADN/biosíntesis , Daño del ADN/genética , Humanos , Proteína FUS de Unión a ARN/genética
9.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071254

RESUMEN

A central characteristic of Alzheimer's disease (AD) and other tauopathies is the accumulation of aggregated and misfolded Tau deposits in the brain. Tau-targeting therapies for AD have been unsuccessful in patients to date. Here we show that human polymerase δ-interacting protein 2 (PolDIP2) interacts with Tau. With a set of complementary methods, including thioflavin-T-based aggregation kinetic assays, Tau oligomer-specific dot-blot analysis, and single oligomer/fibril analysis by atomic force microscopy, we demonstrate that PolDIP2 inhibits Tau aggregation and amyloid fibril growth in vitro. The identification of PolDIP2 as a potential regulator of cellular Tau aggregation should be considered for future Tau-targeting therapeutics.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Proteínas Nucleares/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Benzotiazoles , Encéfalo/metabolismo , Humanos , Proteínas Nucleares/genética , Tauopatías
10.
Nucleic Acids Res ; 49(4): 2179-2191, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33533925

RESUMEN

Replication forks often stall at damaged DNA. To overcome these obstructions and complete the DNA duplication in a timely fashion, replication can be restarted downstream of the DNA lesion. In mammalian cells, this repriming of replication can be achieved through the activities of primase and polymerase PrimPol. PrimPol is stimulated in DNA synthesis through interaction with PolDIP2, however the exact mechanism of this PolDIP2-dependent stimulation is still unclear. Here, we show that PrimPol uses a flexible loop to interact with the C-terminal ApaG-like domain of PolDIP2, and that this contact is essential for PrimPol's enhanced processivity. PolDIP2 increases primer-template and dNTP binding affinities of PrimPol, which concomitantly enhances its nucleotide incorporation efficiency. This stimulation is dependent on a unique arginine cluster in PolDIP2. Since the polymerase activity of PrimPol alone is very limited, this mechanism, where the affinity for dNTPs gets increased by PolDIP2 binding, might be critical for the in vivo function of PrimPol in tolerating DNA lesions at physiological nucleotide concentrations.


Asunto(s)
Arginina/química , ADN Primasa/química , ADN Polimerasa Dirigida por ADN/química , ADN/biosíntesis , Enzimas Multifuncionales/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Modelos Moleculares , Enzimas Multifuncionales/metabolismo , Unión Proteica
11.
J Am Chem Soc ; 142(6): 2876-2888, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31990532

RESUMEN

The signal transducer and activator of transcription 3 (STAT3) protein is a master regulator of most key hallmarks and enablers of cancer, including cell proliferation and the response to DNA damage. G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures enriched at telomeres and oncogenes' promoters. In cancer cells, stabilization of G4 DNAs leads to replication stress and DNA damage accumulation and is therefore considered a promising target for oncotherapy. Here, we designed and synthesized novel quinazoline-based compounds that simultaneously and selectively affect these two well-recognized cancer targets, G4 DNA structures and the STAT3 protein. Using a combination of in vitro assays, NMR, and molecular dynamics simulations, we show that these small, uncharged compounds not only bind to the STAT3 protein but also stabilize G4 structures. In human cultured cells, the compounds inhibit phosphorylation-dependent activation of STAT3 without affecting the antiapoptotic factor STAT1 and cause increased formation of G4 structures, as revealed by the use of a G4 DNA-specific antibody. As a result, treated cells show slower DNA replication, DNA damage checkpoint activation, and an increased apoptotic rate. Importantly, cancer cells are more sensitive to these molecules compared to noncancerous cell lines. This is the first report of a promising class of compounds that not only targets the DNA damage cancer response machinery but also simultaneously inhibits the STAT3-induced cancer cell proliferation, demonstrating a novel approach in cancer therapy.


Asunto(s)
G-Cuádruplex , Neoplasias/patología , Quinazolinas/química , Factor de Transcripción STAT3/metabolismo , Muerte Celular , Humanos , Ligandos , Neoplasias/metabolismo
12.
Angew Chem Int Ed Engl ; 58(5): 1417-1421, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30506956

RESUMEN

Colibactin is a small molecule produced by certain bacterial species of the human microbiota that harbour the pks genomic island. Pks+ bacteria induce a genotoxic phenotype in eukaryotic cells and have been linked with colorectal cancer progression. Colibactin is produced in a benign, prodrug form which, prior to export, is enzymatically matured by the producing bacteria to its active form. Although the complete structure of colibactin has not been determined, key structural features have been described including an electrophilic cyclopropane motif, which is believed to alkylate DNA. To investigate the influence of the putative "warhead" and the prodrug strategy on genotoxicity, a series of photolabile colibactin probes were prepared that upon irradiation induced a pks+ like phenotype in HeLa cells. Furthermore, results from DNA cross-linking and imaging studies of clickable analogues enforce the hypothesis that colibactin effects its genotoxicity by directly targeting DNA.


Asunto(s)
Sondas Moleculares/farmacología , Péptidos/farmacología , Policétidos/farmacología , Ciclo Celular/efectos de los fármacos , Daño del ADN , Células HeLa , Humanos , Sondas Moleculares/química , Estructura Molecular , Péptidos/química , Procesos Fotoquímicos , Policétidos/química
13.
Nucleic Acids Res ; 46(18): 9471-9483, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102370

RESUMEN

The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.


Asunto(s)
ADN Mitocondrial/genética , Endonucleasas de ADN Solapado/genética , Proteínas Mitocondriales/genética , Ribonucleasa H/genética , Replicación del ADN/genética , Humanos , Mitocondrias/genética , ARN , Proteínas Recombinantes/genética , Ribonucleótidos/genética
14.
Bioessays ; 40(9): e1800102, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29999547

RESUMEN

Mammalian mitochondrial DNA (mtDNA) replication and repair have been studied intensively for the last 50 years. Although recently advances in elucidating the molecular mechanisms of mtDNA maintenance and the proteins involved in these have been made, there are disturbing gaps between the existing theoretical models and experimental observations. Conflicting data and hypotheses exist about the role of RNA and ribonucleotides in mtDNA replication, but also about the priming of replication and the formation of pathological rearrangements. In the presented review, we have attempted to match these loose ends and draft consensus where it can be found, while identifying outstanding issues for future research.


Asunto(s)
ADN Mitocondrial/genética , Mamíferos/genética , Mitocondrias/genética , Animales , Replicación del ADN/genética , Humanos , ARN/genética
15.
PLoS Genet ; 14(3): e1007315, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29601571

RESUMEN

Ribonucleotides (rNMPs) are frequently incorporated during replication or repair by DNA polymerases and failure to remove them leads to instability of nuclear DNA (nDNA). Conversely, rNMPs appear to be relatively well-tolerated in mitochondrial DNA (mtDNA), although the mechanisms behind the tolerance remain unclear. We here show that the human mitochondrial DNA polymerase gamma (Pol γ) bypasses single rNMPs with an unprecedentedly high fidelity and efficiency. In addition, Pol γ exhibits a strikingly low frequency of rNMP incorporation, a property, which we find is independent of its exonuclease activity. However, the physiological levels of free rNTPs partially inhibit DNA synthesis by Pol γ and render the polymerase more sensitive to imbalanced dNTP pools. The characteristics of Pol γ reported here could have implications for forms of mtDNA depletion syndrome (MDS) that are associated with imbalanced cellular dNTP pools. Our results show that at the rNTP/dNTP ratios that are expected to prevail in such disease states, Pol γ enters a polymerase/exonuclease idling mode that leads to mtDNA replication stalling. This could ultimately lead to mtDNA depletion and, consequently, to mitochondrial disease phenotypes such as those observed in MDS.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/biosíntesis , Desoxirribonucleósidos/metabolismo , Fosfatos/metabolismo , Animales , ADN Polimerasa gamma/metabolismo , Ratones , Ratones Endogámicos C57BL
16.
Proc Natl Acad Sci U S A ; 114(47): 12466-12471, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109257

RESUMEN

Incorporation of ribonucleotides into DNA during genome replication is a significant source of genomic instability. The frequency of ribonucleotides in DNA is determined by deoxyribonucleoside triphosphate/ribonucleoside triphosphate (dNTP/rNTP) ratios, by the ability of DNA polymerases to discriminate against ribonucleotides, and by the capacity of repair mechanisms to remove incorporated ribonucleotides. To simultaneously compare how the nuclear and mitochondrial genomes incorporate and remove ribonucleotides, we challenged these processes by changing the balance of cellular dNTPs. Using a collection of yeast strains with altered dNTP pools, we discovered an inverse relationship between the concentration of individual dNTPs and the amount of the corresponding ribonucleotides incorporated in mitochondrial DNA, while in nuclear DNA the ribonucleotide pattern was only altered in the absence of ribonucleotide excision repair. Our analysis uncovers major differences in ribonucleotide repair between the two genomes and provides concrete evidence that yeast mitochondria lack mechanisms for removal of ribonucleotides incorporated by the mtDNA polymerase. Furthermore, as cytosolic dNTP pool imbalances were transmitted equally well into the nucleus and the mitochondria, our results support a view of the cytosolic and mitochondrial dNTP pools in frequent exchange.


Asunto(s)
ADN Polimerasa gamma/fisiología , Desoxirribonucleótidos/fisiología , Genoma Mitocondrial/fisiología , Mitocondrias/fisiología , Saccharomyces cerevisiae/fisiología , Núcleo Celular/fisiología , Citoplasma/fisiología , Reparación de la Incompatibilidad de ADN/fisiología , Replicación del ADN/fisiología , ADN Mitocondrial/metabolismo , Inestabilidad Genómica
17.
Proc Natl Acad Sci U S A ; 114(43): 11398-11403, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073063

RESUMEN

Eukaryotic PrimPol is a recently discovered DNA-dependent DNA primase and translesion synthesis DNA polymerase found in the nucleus and mitochondria. Although PrimPol has been shown to be required for repriming of stalled replication forks in the nucleus, its role in mitochondria has remained unresolved. Here we demonstrate in vivo and in vitro that PrimPol can reinitiate stalled mtDNA replication and can prime mtDNA replication from nonconventional origins. Our results not only help in the understanding of how mitochondria cope with replicative stress but can also explain some controversial features of the lagging-strand replication.


Asunto(s)
Replicación del ADN/fisiología , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Línea Celular , Células Cultivadas , Medios de Cultivo , ADN Polimerasa Dirigida por ADN/genética , Fibroblastos , Eliminación de Gen , Ratones , Piridinas , Rayos Ultravioleta
18.
PLoS One ; 12(9): e0184489, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28902865

RESUMEN

Human PrimPol is a DNA primase/polymerase involved in DNA damage tolerance and prevents nuclear genome instability. PrimPol is also localized to the mitochondria, but its precise function in mitochondrial DNA maintenance has remained elusive. PrimPol works both as a translesion (TLS) polymerase and as the primase that restarts DNA replication after a lesion. However, the observed biochemical activities of PrimPol vary considerably between studies as a result of different reaction conditions used. To reveal the effects of reaction composition on PrimPol DNA polymerase activity, we tested the polymerase activity in the presence of various buffer agents, salt concentrations, pH values and metal cofactors. Additionally, the enzyme stability was analyzed under various conditions. We demonstrate that the reaction buffer with pH 6-6.5, low salt concentrations and 3 mM Mg2+ or 0.3-3 mM Mn2+ cofactor ions supports the highest DNA polymerase activity of human PrimPol in vitro. The DNA polymerase activity of PrimPol was found to be stable after multiple freeze-thaw cycles and prolonged protein incubation on ice. However, rapid heat-inactivation of the enzyme was observed at 37ºC. We also for the first time describe the purification of human PrimPol from a human cell line and compare the benefits of this approach to the expression in Escherichia coli and in Saccharomyces cerevisiae cells. Our results show that active PrimPol can be purified from E. coli and human suspension cell line in high quantities and that the activity of the purified enzyme is similar in both expression systems. Conversely, the yield of full-length protein expressed in S. cerevisiae was considerably lower and this system is therefore not recommended for expression of full-length recombinant human PrimPol.


Asunto(s)
ADN Primasa/genética , ADN Primasa/aislamiento & purificación , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/aislamiento & purificación , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/aislamiento & purificación , Reacción en Cadena de la Polimerasa/normas , Calibración , Células Cultivadas , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Células HEK293 , Humanos , Ingeniería Metabólica/normas , Enzimas Multifuncionales/metabolismo , Organismos Modificados Genéticamente , Reacción en Cadena de la Polimerasa/métodos , Estabilidad Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
19.
Int J Mol Sci ; 18(7)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28754021

RESUMEN

PrimPol is a human deoxyribonucleic acid (DNA) polymerase that also possesses primase activity and is involved in DNA damage tolerance, the prevention of genome instability and mitochondrial DNA maintenance. In this review, we focus on recent advances in biochemical and crystallographic studies of PrimPol, as well as in identification of new protein-protein interaction partners. Furthermore, we discuss the possible functions of PrimPol in both the nucleus and the mitochondria.


Asunto(s)
Daño del ADN , ADN Primasa/química , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Multifuncionales/química , Enzimas Multifuncionales/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cristalografía , Replicación del ADN , ADN Mitocondrial/genética , Inestabilidad Genómica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo
20.
Hum Mol Genet ; 26(8): 1432-1443, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158749

RESUMEN

De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity.


Asunto(s)
Adenosina Trifosfatasas/genética , Parálisis Cerebral/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Paraplejía Espástica Hereditaria/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/biosíntesis , Adolescente , Adulto , Axones/metabolismo , Axones/patología , Parálisis Cerebral/patología , Preescolar , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas de la Membrana/biosíntesis , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Proteínas Mitocondriales/biosíntesis , Mutación , Paraplejía Espástica Hereditaria/patología , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...