Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 272(1): 245-55, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23707608

RESUMEN

Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colesterol/metabolismo , Crizotinib , Canal de Potasio ERG1 , Activación Enzimática/efectos de los fármacos , Clorhidrato de Erlotinib , Canales de Potasio Éter-A-Go-Go/biosíntesis , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Indoles/toxicidad , Canales Iónicos/efectos de los fármacos , Lípidos/biosíntesis , Miocitos Cardíacos/ultraestructura , Técnicas de Placa-Clamp , Células Madre Pluripotentes/efectos de los fármacos , Pirazoles/toxicidad , Piridinas/toxicidad , Pirimidinas/toxicidad , Pirroles/toxicidad , Quinazolinas/toxicidad , ARN/biosíntesis , ARN/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sunitinib
2.
Cell Cycle ; 7(12): 1769-75, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18594201

RESUMEN

ErbB2 targeted therapies represent an attractive strategy in breast cancer. Herceptin, an anti-ErbB2 monoclonal antibody, is an approved treatment for patients with ErbB2-overexpressing breast cancers. ErbB2 signaling can also be blocked using small molecule tyrosine kinase inhibitors, like Lapatinib, that compete with ATP for binding at the ErbB2 catalytic kinase domain. The principal adverse event attributable to Herceptin is cardiac toxicity. Data from clinical trials show that, unlike Herceptin, Lapatinib may have reduced cardiac toxicity. This study was conducted to elucidate pathways which may contribute to cardiac toxicity or survival using Lapatinib and Herceptin. Our results show that treatments directed to ErbB1/2 receptors using GW-2974 (a generic ErbB1/2 inhibitor) activated AMPK, a key regulator in mitochondrial energy production pathways in human cardiac cells and cancer cells. Although Herceptin downregulates tumor survival pathways, AMPK fails to be activated in tumor and cardiac cells. When treated in combination with TNFalpha, a known cytokine associated with cardiac toxicity, GW-2974 protected cardiac cells from cell death whereas Herceptin contributed to TNFalpha-induced cellular killing. Since activity of AMPK in cardiac cells is associated with stress induced survival in response to cytokines or energy depletion, cardiac toxicity by Herceptin may be a consequence of failure to induce stress-related survival mechanisms. Thus, the ability to activate AMPK after treatment with tyrosine kinase inhibitors may be a crucial factor for increased efficacy against the tumor and decreased risk of cardiomyopathy.


Asunto(s)
Antineoplásicos/toxicidad , Complejos Multienzimáticos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Serina-Treonina Quinasas/metabolismo , Quinazolinas/toxicidad , Proteínas Quinasas Activadas por AMP , Anticuerpos Monoclonales/toxicidad , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Células Cultivadas , Activación Enzimática , Receptores ErbB/antagonistas & inhibidores , Genes p53 , Humanos , Mutación , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...