Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Learn Mem ; 27(2): 45-51, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31949036

RESUMEN

The medial prefrontal cortex (mPFC) is known to be critical for specific forms of long-term recognition memory, however the cellular mechanisms in the mPFC that underpin memory maintenance have not been well characterized. This study examined the importance of phosphorylation of cAMP responsive element binding protein (CREB) in the mPFC for different forms of long-term recognition memory in the rat. Adenoviral transduction of the mPFC with a dominant-negative inhibitor of CREB impaired object-in-place memory following a 6 or 24 h retention delay, but no impairment was observed following delays of 5 min or 3 h. Long-term object temporal order memory and spatial temporal order memory was also impaired. In contrast, there were no impairments in novel object recognition or object location memory. These results establish, for the first time, the importance of CREB phosphorylation within the mPFC for memory of associative and temporal information crucial to recognition.


Asunto(s)
Asociación , Proteína de Unión a CREB/fisiología , Memoria a Largo Plazo/fisiología , Corteza Prefrontal/metabolismo , Reconocimiento en Psicología/fisiología , Memoria Espacial/fisiología , Transcripción Genética/genética , Animales , Conducta Animal/fisiología , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Dependovirus , Masculino , Fosforilación/fisiología , Ratas
2.
Behav Brain Res ; 328: 1-12, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28389337

RESUMEN

We have used transcriptome analysis to identify genes and pathways that are activated during recognition memory formation in the perirhinal cortex. Rats were exposed to objects either repeatedly, so that the objects become familiar, or to novel objects in a bow-tie maze over six consecutive days. On the final day, one hour after the last exposure to the series of objects, RNA from the perirhinal cortex was sequenced to compare the transcriptome of naïve control rats and rats exposed to either novel or familiar stimuli. Differentially expressed genes were identified between group Novel and group Familiar rats. These included genes coding for transcription factors, GDNF receptors and extracellular matrix-related proteins. Moreover, differences in alternative splicing were also detected between the two groups, which suggests that this post-transcriptional mechanism may play a role in the consolidation of object recognition memory. To conclude, this study shows that RNA sequencing can be used as a tool to identify differences in gene expression in behaving animals undergoing the same task but encountering different exposures.


Asunto(s)
Corteza Perirrinal/metabolismo , Reconocimiento en Psicología/fisiología , Transcriptoma , Empalme Alternativo , Animales , Expresión Génica , Ontología de Genes , Masculino , Aprendizaje por Laberinto/fisiología , Ratas
3.
Hippocampus ; 24(8): 934-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24729442

RESUMEN

Atypical isoforms of protein kinase C (aPKCs; particularly protein kinase M zeta: PKMζ) have been hypothesized to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long term memory by maintaining postsynaptic AMPA receptors via the GluA2 subunit. A myristoylated PKMζ pseudosubstrate peptide (ZIP) blocks PKMζ activity. We examined the actions of ZIP in medial prefrontal cortex (mPFC) and hippocampus in associative recognition memory in rats during early memory formation and memory maintenance. ZIP infusion in either hippocampus or mPFC impaired memory maintenance. However, early memory formation was impaired by ZIP in mPFC but not hippocampus; and blocking GluA2-dependent removal of AMPA receptors did not affect this impairment caused by ZIP in the mPFC. The findings indicate: (i) a difference in the actions of ZIP in hippocampus and medial prefrontal cortex, and (ii) a GluA2-independent target of ZIP (possibly PKCλ) in the mPFC during early memory formation.


Asunto(s)
Hipocampo/efectos de los fármacos , Lipopéptidos/farmacología , Memoria/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Aprendizaje por Asociación/efectos de los fármacos , Aprendizaje por Asociación/fisiología , Péptidos de Penetración Celular , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Hipocampo/fisiología , Masculino , Memoria/fisiología , Pruebas Neuropsicológicas , Corteza Prefrontal/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo
4.
Eur J Neurosci ; 36(7): 2941-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22845676

RESUMEN

Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex.The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory.


Asunto(s)
Corteza Cerebral/fisiología , Regulación de la Expresión Génica , Potenciación a Largo Plazo/genética , Memoria a Corto Plazo/fisiología , MicroARNs/metabolismo , Reconocimiento en Psicología/fisiología , Animales , Corteza Cerebral/metabolismo , Potenciales Postsinápticos Excitadores , Células HeLa , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , MicroARNs/genética , Ratas , Ratas Wistar
5.
J Neurosci ; 31(29): 10721-31, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21775615

RESUMEN

The role of the hippocampus in recognition memory is controversial. Recognition memory judgments may be made using different types of information, including object familiarity, an object's spatial location, or when an object was encountered. Experiment 1 examined the role of the hippocampus in recognition memory tasks that required the animals to use these different types of mnemonic information. Rats with bilateral cytotoxic lesions in the hippocampus or perirhinal or prefrontal cortex were tested on a battery of spontaneous object recognition tasks requiring the animals to make recognition memory judgments using familiarity (novel object preference); object-place information (object-in-place memory), or recency information (temporal order memory). Experiment 2 examined whether, when using different types of recognition memory information, the hippocampus interacts with either the perirhinal or prefrontal cortex. Thus, groups of rats were prepared with a unilateral cytotoxic lesion in the hippocampus combined with a lesion in either the contralateral perirhinal or prefrontal cortex. Rats were then tested in a series of object recognition memory tasks. Experiment 1 revealed that the hippocampus was crucial for object location, object-in-place, and recency recognition memory, but not for the novel object preference task. Experiment 2 revealed that object-in-place and recency recognition memory performance depended on a functional interaction between the hippocampus and either the perirhinal or medial prefrontal cortices. Thus, the hippocampus plays a role in recognition memory when such memory involves remembering that a particular stimulus occurred in a particular place or when the memory contains a temporal or object recency component.


Asunto(s)
Hipocampo/fisiología , Reconocimiento en Psicología/fisiología , Análisis de Varianza , Animales , Conducta Animal , Aprendizaje Discriminativo/fisiología , Corteza Entorrinal/lesiones , Corteza Entorrinal/fisiología , Conducta Exploratoria/fisiología , Lateralidad Funcional , Hipocampo/lesiones , Masculino , N-Metilaspartato/toxicidad , Pruebas Neuropsicológicas , Corteza Prefrontal/lesiones , Corteza Prefrontal/fisiología , Ratas , Conducta Espacial/fisiología , Factores de Tiempo
6.
Learn Mem ; 16(1): 8-11, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19117911

RESUMEN

Object-in-place memory, which relies on the formation of associations between an object and the place in which it was encountered, depends upon a neural circuit comprising the perirhinal (PRH) and medial prefrontal (mPFC) cortices. This study examined the contribution of muscarinic cholinergic neurotransmission within this circuit to such object-in-place associative memory. Intracerebral administration of scopolamine in the PRH or mPFC impaired memory acquisition, but not retrieval and importantly we showed that unilateral blockade of muscarinic receptors simultaneously in both regions in opposite hemispheres, significantly impaired performance. Thus, object-in-place associative memory depends upon cholinergic modulation of neurones within the PRH-PFC circuit.


Asunto(s)
Aprendizaje por Asociación/fisiología , Encéfalo/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Receptores Muscarínicos/fisiología , Animales , Aprendizaje por Asociación/efectos de los fármacos , Encéfalo/efectos de los fármacos , Antagonistas Colinérgicos/administración & dosificación , Inyecciones Intraventriculares , Memoria/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Ratas , Receptores Muscarínicos/efectos de los fármacos , Escopolamina/administración & dosificación
7.
J Neurosci ; 28(30): 7548-54, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18650332

RESUMEN

Learning is widely believed to involve synaptic plasticity, using mechanisms such as those used in long-term potentiation (LTP). We assess whether the mechanisms used in alternative forms of plasticity, long-term depression (LTD) and depotentiation, play a role in learning. We have exploited the involvement of the perirhinal cortex in two different forms of learning to compare simultaneously, within the same brain region, their effects on LTD and depotentiation. Multiple-exposure learning but not single-exposure learning in vivo prevented, in a muscarinic receptor-dependent manner, subsequent induction of LTD and depotentiation, but not LTP, in perirhinal cortex in vitro. The contrast in the effects of the two types of learning under these particular experimental conditions indicate that the in vitro change is unlikely to be attributable to synapse-specific plastic changes registering the precise details of the individual learned associations. Instead, it is concluded that the lack of LTD and depotentiation arises from, and establishes the importance of, a learning-related generalized change in plasticity gain. The existence of this additional mechanism has important implications for interpretations of how plasticity relates to learning.


Asunto(s)
Corteza Cerebral/fisiología , Aprendizaje/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Animales , Conducta Animal , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de la radiación , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/farmacología , Estimulación Luminosa/métodos , Ratas , Reconocimiento en Psicología/fisiología , Escopolamina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...