Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hum Evol ; 194: 103579, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173445

RESUMEN

A hominin mandible, KNM-ER 63000, and associated vertebrate remains were recovered in 2011 from Area 40 in East Turkana, Kenya. Tephrostratigraphic and magnetostratigraphic analyses indicate that these fossils date to ∼4.3 Ma. KNM-ER 63000 consists of articulating but worn and weathered mandibular corpora, with a broken right M2 crown and alveoli preserved at other tooth positions. Despite extensive damage, KNM-ER 63000 preserves diagnostic anatomy permitting attribution to Australopithecus anamensis. It can be distinguished from Australopithecus afarensis by its strongly inclined symphyseal axis with a basally convex, 'cut-away' external surface, a lateral corpus that sweeps inferomedially beneath the canine-premolar row, and alignment of the canine alveolus with the postcanine axis. KNM-ER 63000 is distinguished from Ardipithecus ramidus by its thick mandibular corpus and large M2 crown. The functional trait structure and enamel's stable carbon isotopic composition of the Area 40 large-mammal community suggests an environment comparable to Kanapoi and other ∼4.5-4 Ma eastern African sites that would have offered Au. anamensis access to both C3 and C4 food resources. With an age of ∼4.3 Ma, KNM-ER 63000 is the oldest known specimen of Au. anamensis, predating the Kanapoi and Asa Issie samples by at least ∼100 kyr. This specimen extends the known temporal range of Au. anamensis and places it in temporal overlap with fossils of Ar. ramidus from Gona, Ethiopia. The morphology of KNM-ER 63000 indicates that the reconfigured masticatory system differentiating basal hominins from the earliest australopiths existed in the narrow temporal window, if any, separating the two. The very close temporal juxtaposition of these significant morphological and adaptive differences implies that Ar. ramidus was a relative rather than a direct phyletic ancestor of earliest Australopithecus.

2.
J Hum Evol ; 192: 103519, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843697

RESUMEN

An ape partial postcranial skeleton (KNM-NP 64631) was recovered during the 2015-2021 field seasons at Napudet, a Middle Miocene (∼13 Ma) locality in northern Kenya. Bony elements representing the shoulder, elbow, hip, and ankle joints, thoracic and lumbar vertebral column, and hands and feet, offer valuable new information about the body plan and positional behaviors of Middle Miocene apes. Body mass estimates from femoral head dimensions suggest that the KNM-NP 64631 individual was smaller-bodied (c. 13-17 kg) than some Miocene taxa from eastern Africa, including Ekembo nyanzae, and probably Equatorius africanus or Kenyapithecus wickeri, and was more comparable to smaller-bodied male Nacholapithecus kerioi individuals. Similar to many Miocene apes, the KNM-NP 64631 individual had hip and hallucal tarsometatarsal joints reflecting habitual hindlimb loading in a variety of postures, a distal tibia with a large medial malleolus, an inflated humeral capitulum, probably a long lumbar spine, and a long pollical proximal phalanx relative to femoral head dimensions. The KNM-NP 64631 individual departs from most Early Miocene apes in its possession of a more steeply beveled radial head and deeper humeral zona conoidea, reflecting enhanced supinating-pronating abilities at the humeroradial joint. The KNM-NP 64631 individual also differs from Early Miocene Ekembo heseloni in having a larger elbow joint (inferred from radial head size) relative to the mediolateral width of the lumbar vertebral bodies and a more asymmetrical talar trochlea, and in these ways recalls inferred joint proportions for, and talocrural morphology of, N. kerioi. Compared to most Early Miocene apes, the KNM-NP 64631 individual likely relied on more forelimb-dominated arboreal behaviors, perhaps including vertical climbing (e.g., extended elbow, hoisting). Moreover, the Napudet ape partial postcranial skeleton suggests that an arboreally adapted body plan characterized by relatively large (here, based on joint size) forelimbs, but lacking orthograde suspensory adaptations, may not have been 'unusual' among Middle Miocene apes.


Asunto(s)
Fósiles , Hominidae , Animales , Kenia , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Masculino , Femenino , Antropología Física , Evolución Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...