RESUMEN
HbSC disease is a common form of sickle cell disease with significant morbidity and early mortality. Whether hydroxyurea is beneficial for HbSC disease is unknown. Prospective Identification of Variables as Outcomes for Treatment (PIVOT, Trial ID PACTR202108893981080) is a double-blind, randomised, placebo-controlled phase II trial of hydroxyurea for people with HbSC, age 5-50 years, in Ghana. After screening, participants were randomised to placebo (standard of care) or hydroxyurea. The primary outcome is the cumulative incidence of haematological toxicities during 12 months of blinded treatment; secondary outcomes include multiple laboratory and clinical assessments. Between April 2022 and June 2023, 112 children and 102 adults were randomised, including 44% females and average age 21.6 ± 14.5 years. Participants had substantial morbidity including previous hospitalisations (93%), vaso-occlusive events (86%), malaria (79%), often received transfusions (20%), with baseline haemoglobin 11.0 ± 1.2 g/dL and foetal haemoglobin 1.8% ± 1.5%. The spleen was palpable in six children and one adult, and ultrasonographic volumes were collected. Proliferative sickle retinopathy was common (30% children, 75% adults), but proteinuria was less common (3% children, 8% adults). Whole blood viscosity, ektacytometry, point-of-sickling, transcranial Doppler, near-infrared spectrometry (NIRS), 6-minute walk, and quality of life were also measured. Now fully enrolled, PIVOT will document the safety and potential benefits of hydroxyurea on clinical and laboratory outcomes in HbSC disease.
RESUMEN
BACKGROUND: Recently, there has been an unexplained increase in the incidence of blackwater fever (BWF) in Eastern Uganda. In this study, we evaluate the association between immune complexes, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and the occurrence and recurrence of BWF in children with severe malaria (SM). METHODS: Between 2014 and 2017, children aged six months to <4 years hospitalized with SM and community children (CC) were recruited at two hospitals in Central and Eastern Uganda. We measured serum circulating immune complexes (cIC) and their relationship to SM complications and post-discharge outcomes and evaluated effect mediation through G6PD deficiency. RESULTS: 557 children with SM and 101 CC were enrolled. The mean age of children was 2.1 years. Children with SM had higher cIC levels than CC, p<0.001. After controlling for age, sex, and site, cIC were associated with severe anemia, jaundice, and BWF (adjusted odds ratio, 95% confidence interval: 7.33 (3.45, 15.58), p<0.0001; 4.31 (1.68, 11.08), p=0.002; and 5.21 (2.06, 13.18), p<0.0001), respectively. cIC predicted readmissions for SM, severe anemia, and BWF (adjusted incidence rate ratios (95% confidence interval): 2.11 (1.33, 3.34), p=0.001; 8.62 (2.80, 26.59), p<0.0001; and 7.66 (2.62, 22.45), p<0.0001), respectively. The relationship was most evident in males where the frequency of the G6PD African allele (A-) was 16.8%. G6PD deficiency was associated with increases in cIC in males (p=0.01) and mediation analysis suggested G6PD deficiency contributes to recurrent severe anemia and BWF via increased cIC. CONCLUSIONS: Immune complexes are associated with hemolytic complications and predict recurrences in SM survivors.
RESUMEN
The mechanisms of action of l-glutamine for the treatment of sickle cell disease (SCD) are not well understood and there are no validated clinical biomarkers to assess response. We conducted a three-week, dose-ascending trial of glutamine and measured the pharmacokinetic (PK) exposure parameters, peak concentration (Cmax) and area under the curve (AUC). We used a panel of biomarkers to investigate the pharmacodynamics (PD) of glutamine and studied PK-PD relationships. There was no plasma accumulation of glutamine, glutamate, arginine or other amino acids over time, but modestly improved arginine bioavailability was observed. In standard analysis by dose levels over time, there were no measurable effects on blood counts, viscosity, ektacytometry or reactive oxygen species (ROS). In PK-PD analysis, however, higher glutamine exposure (Cmax or AUC) was associated with increased whole blood viscosity and cellular dehydration, yet also with higher haemoglobin concentration, increased haematocrit-to-viscosity ratio, decreased reticulocyte ROS, improved RBC deformability and decreased point of sickling. This novel PK-PD analysis identified biomarkers reflecting the positive and negative effects of glutamine, helping to elucidate its mechanisms of action in SCD. PK-optimized dosing to achieve glutamine exposure (AUC or Cmax) that is associated with salutary biological effects should be studied to support its therapeutic use.
Asunto(s)
Anemia de Células Falciformes , Glutamina , Glutamina/farmacocinética , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/sangre , Humanos , Masculino , Adulto , Femenino , Especies Reactivas de Oxígeno/metabolismo , Biomarcadores/sangre , Adulto Joven , Viscosidad Sanguínea/efectos de los fármacosRESUMEN
INTRODUCTION: People with sickle cell anemia (SCA) may require frequent blood transfusions to treat acute and chronic complications. Hydroxyurea is a life-saving treatment for SCA that could also decrease the need for blood transfusions. Inadequate medication access and challenges in dose optimization limit the widespread use of hydroxyurea in Africa. If feasible, pharmacokinetic (PK) dosing might improve dose determination to minimize toxicities and maximize clinical benefits. The Alternative Dosing And Prevention of Transfusions (ADAPT, NCT05662098) trial will analyze the impact of hydroxyurea on transfusion rate and serve as a pilot study to evaluate the feasibility of PK-guided hydroxyurea dosing in Uganda. METHODS: Herein we describe the rationale and design of ADAPT, a prospective cohort study of â¼100 children with SCA in Jinja, Uganda. The primary hypothesis is that hydroxyurea will decrease blood transfusion use by ≥ 50%, comparing the transfusion incidence rate ratio between a 3-month pretreatment and a 12-month treatment period. A key secondary hypothesis is that our PK-dosing approach will generate a suitable hydroxyurea dose for ≥80% of participants. Every ADAPT participant will undergo hydroxyurea PK testing, and if a dose is generated within 15-35 mg/kg/day, participants will start on their individualized dose. If not, they will start on a default dose of 20 mg/kg/day. Hydroxyurea dose optimization will occur with periodic dose adjustments. CONCLUSION: Overall, demonstrating the reduction in blood transfusion utilization with hydroxyurea treatment would provide leverage to increase hydroxyurea access, and PK-guided hydroxyurea dosing should optimize the safe and effective treatment of SCA across sub-Saharan Africa.
RESUMEN
BACKGROUND: Realizing Effectiveness Across Continents with Hydroxyurea (REACH) is an open-label non-randomised trial of hydroxyurea (hydroxycarbamide) in children with sickle cell anaemia in sub-Saharan Africa. The short-term results of REACH on safety, feasibility, and effectiveness of hydroxyurea were published previously. In this paper we report results from extended hydroxyurea treatment in the REACH cohort up to 8 years. METHODS: In this open-label, non-randomised, phase 1/2 trial, participants were recruited from four clinical sites in Kilifi, Kenya; Mbale, Uganda; Luanda, Angola; and Kinshasa, Democratic Republic of Congo. Eligible children were 1-10 years old with documented haemoglobin SS or haemoglobin Sß zero thalassaemia, weighing at least 10 kg. Participants received fixed-dose hydroxyurea of 17.5 (±2.5) mg/kg per day for 6 months (fixed-dose phase), followed by 6 months of dose escalation (2·5-5·0 mg/kg increments every 8 weeks) as tolerated, up to 20-35 mg/kg per day (maximum tolerated dose; MTD), defined as mild myelosuppression. After the MTD was reached, hydroxyurea dosing was optimised for each participant on the basis of changes in bodyweight and laboratory values over time (MTD with optimisation phase). After completion of the first 12 months, children with an acceptable toxicity profile and favourable responses were given the opportunity to continue hydroxyurea until the age of 18 years. The safety and feasibility results after 3 years has been reported previously. Here, haematological responses, clinical events, and toxicity rates were compared across the dosing phases (fixed-dose hydroxyurea vs MTD with optimisation phase) as protocol-specified outcomes. REACH is registered on ClinicalTrials.gov (NCT01966731) and is ongoing. FINDINGS: We enrolled 635 children between July 4, 2014, and Nov 11, 2016. 606 children were given hydroxyurea and 522 (86%; 266 [51%] boys and 256 [49%] girls) received treatment for a median of 93 months (IQR 84-97) with 4340 patient-years of treatment. The current (Oct 5, 2023) mean dose is 28·2 (SD 5·2) mg/kg per day with an increased mean haemoglobin concentration (7·3 [SD 1·1] g/dL at baseline to 8·5 [1·5] g/dL) and mean fetal haemoglobin level (10·9% [SD 6·8] to 23·3% [9·5]) and decreased absolute neutrophil count (6·8 [3·0] × 109 cells per L to 3·6 [2·2] × 109 cells per L). Incidence rate ratios (IRR) comparing MTD with fixed-dose hydroxyurea indicate decreased vaso-occlusive episodes (0·60; 95% CI 0·52-0·70; p<0·0001), acute chest syndrome events (0·21; 0·13-0·33; p<0·0001), recurrent stroke events (0·27; 0·07-1·06; p=0·061), malaria infections (0·58; 0·46-0·72; p<0·0001), non-malarial infections (0·52; 0·46-0·58; p<0·0001), serious adverse events (0·42; 0·27-0·67; p<0·0001), and death (0·70; 0·25-1·97; p=0·50). Dose-limiting toxicity rates were similar between the fixed-dose (24·1 per 100 patient-years) and MTD phases (23·2 per 100 patient-years; 0·97; 0·70-1·35; p=0·86). Grade 3 and 4 adverse events were infrequent (18·5 per 100 patient-years) and included malaria infection, non-malarial infections, vaso-occlusive pain, and acute chest syndrome. Serious adverse events were uncommon (3·6 per 100 patient-years) and included malaria infections, parvovirus-associated anaemia, sepsis, and stroke, with no treatment-related deaths. INTERPRETATION: Hydroxyurea dose escalation to MTD with dose optimisation significantly improved clinical responses and treatment outcomes, without increasing toxicities in children with sickle cell anaemia in sub-Saharan Africa. FUNDING: US National Heart, Lung, and Blood Institute and Cincinnati Children's Research Foundation.
Asunto(s)
Anemia de Células Falciformes , Antidrepanocíticos , Hidroxiurea , Humanos , Hidroxiurea/uso terapéutico , Hidroxiurea/administración & dosificación , Hidroxiurea/efectos adversos , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/sangre , Preescolar , Niño , Masculino , Femenino , África del Sur del Sahara , Estudios de Seguimiento , Lactante , Antidrepanocíticos/uso terapéutico , Antidrepanocíticos/efectos adversos , Antidrepanocíticos/administración & dosificación , Resultado del Tratamiento , Relación Dosis-Respuesta a DrogaRESUMEN
ABSTRACT: Sickle cell disease (SCD) is a hereditary red cell disorder with a large disease burden at a global level. In the United States and Europe, medicines may qualify for orphan designation (OD), a regulatory status that provides incentives to boost development. We evaluated the development of new therapies for SCD using data for OD granted in the United States and Europe over the last 2 decades (2000-2021). We analyzed their characteristics, pathophysiological targets, trends, and OD sponsors. We then investigated the approval outcomes, including the phase success rate and reasons for discontinuation across different variables. We identified 57 ODs for SCD: 43 (75.4%) small molecules, 32 (56.1%) for oral administration, and 36 (63.1%) for chronic use to prevent SCD complications. At the end of the study (2021), development of 34 of 57 ODs was completed. Four ODs were approved with a success rate of 11.8%. Products targeting upstream causative events of SCD pathophysiology had a 1.8 higher success rate compared with products targeting disease consequences. Large companies showed a fourfold higher success rate compared with small-medium enterprises. Failures in clinical development were mainly seen in phase 3 for a lack of efficacy on vaso-occlusive crisis as the primary study end point, likely related to variable definitions and heterogeneity of pain scoring and treatment. Both advances in SCD knowledge and regulatory incentives paved the way for new therapies for SCD. Our finding of high failure rates in late-stage clinical development signals the need for better early-stage predictive models, also in the context of meaningful clinical end points.
Asunto(s)
Anemia de Células Falciformes , Desarrollo de Medicamentos , Producción de Medicamentos sin Interés Comercial , Anemia de Células Falciformes/tratamiento farmacológico , Humanos , Estados Unidos , Europa (Continente) , Aprobación de DrogasRESUMEN
Children with sickle cell anemia (SCA) in Africa frequently require transfusions for SCA complications. Despite limited blood supplies, strategies to reduce their transfusion needs have not been widely evaluated or implemented. We analyzed transfusion utilization in children with SCA before and during hydroxyurea treatment. REACH (Realizing Effectiveness Across Continents with Hydroxyurea, NCT01966731) is a longitudinal Phase I/II trial of hydroxyurea in children with SCA from Angola, Democratic Republic of Congo, Kenya, and Uganda. After enrollment, children had a two-month pre-treatment screening period followed by 6 months of fixed-dose hydroxyurea (15-20 mg/kg/day), 18 months of dose escalation, and then stable dosing at maximum tolerated dose (MTD). Characteristics associated with transfusions were analyzed with univariate and multivariable models. Transfusion incidence rate ratios (IRR) across treatment periods were calculated. Among 635 enrolled children with 4124 person-years of observation, 258 participants (40.4%) received 545 transfusions. The transfusion rate per 100 person-years was 43.2 before hydroxyurea, 21.7 on fixed-dose, 14.5 during dose escalation, and 10.8 on MTD. During MTD, transfusion incidence was reduced by 75% compared to pre-treatment (IRR 0.25, 95% confidence interval [CI] 0.18-0.35, p < .0001), and by 50% compared to fixed dose (IRR 0.50, 95% CI 0.39-0.63, p < .0001). Hydroxyurea at MTD decreases transfusion utilization in African children with SCA. If widely implemented, universal testing and hydroxyurea treatment at MTD could potentially prevent 21% of all pediatric transfusions administered in sub-Saharan Africa. Increasing hydroxyurea access for SCA should decrease the transfusion burden and increase the overall blood supply.
Asunto(s)
Anemia de Células Falciformes , Hidroxiurea , Niño , Humanos , Hidroxiurea/uso terapéutico , Antidrepanocíticos/uso terapéutico , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/tratamiento farmacológico , Uganda , KeniaRESUMEN
BACKGROUND AND OBJECTIVE: L-Glutamine is a treatment for children and adults with sickle cell disease. A comprehensive evaluation of the pharmacokinetics of L-glutamine in sickle cell disease has not been conducted. We aimed to assess the effects of long-term dosing, multiple dose levels, and food intake on L-glutamine exposure in patients with sickle cell disease compared to normal participants. METHODS: We conducted an open-label dose-ascending trial of L-glutamine in pediatric and adult participants with sickle cell disease (N = 8) and adult healthy volunteers (N = 4), providing a total of 400 plasma L-glutamine concentrations. Each participant received three ascending oral doses (0.1 and 0.3 g/kg twice daily and 0.6 g/kg once daily) over 3 weeks. Plasma L-glutamine concentrations were quantified using ion exchange chromatography. Both a non-compartmental pharmacokinetic analysis and a population pharmacokinetic analysis were performed. RESULTS: L-glutamine had rapid absorption and elimination, and there was no significant change in the baseline (pre-dose) L-glutamine concentration throughout the study, indicating no drug accumulation. Pharmacokinetics was best described by a one-compartment model with first-order kinetics. The dose-normalized peak concentration decreased with dose escalation, indicating the capacity-limited non-linear pharmacokinetics of oral L-glutamine. A covariate analysis showed that baseline L-glutamine concentrations correlated negatively with glutamine clearance, whereas dose positively correlated with volume of distribution. Food intake did not significantly affect glutamine clearance, indicating that L-glutamine can be taken with or without food. CONCLUSIONS: We report the first pharmacokinetic study of multiple-dose, long-term oral L-glutamine therapy and the first population pharmacokinetic analysis of L-glutamine for sickle cell disease. These findings may permit optimized dosing of L-glutamine for patients with sickle cell disease to maximize treatment benefits. CLINICAL TRIAL REGISTRATION: This trial is registered at ClinicalTrials.gov (NCT04684381).
Asunto(s)
Anemia de Células Falciformes , Glutamina , Adulto , Niño , Humanos , Anemia de Células Falciformes/tratamiento farmacológico , Área Bajo la Curva , Glutamina/farmacocinéticaRESUMEN
ABSTRACT: After starting hydroxyurea treatment, Ugandan children with sickle cell anemia had 60% fewer severe or invasive infections, including malaria, bacteremia, respiratory tract infections, and gastroenteritis, than before starting hydroxyurea treatment (incidence rate ratio, 0.40 [95% confidence interval, 0.29-0.54]; P < .001).
Asunto(s)
Anemia de Células Falciformes , Malaria , Niño , Humanos , Hidroxiurea/uso terapéutico , Antidrepanocíticos/uso terapéutico , Uganda/epidemiología , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/epidemiología , Malaria/complicaciones , Malaria/tratamiento farmacológico , Malaria/epidemiologíaRESUMEN
Accurate laboratory screening for sickle cell disease and other haemoglobin disorders is expanding worldwide. Two new reports describe different methods and strategies for screening in Mali and Denmark, respectively, and their encouraging results suggest that countries should tailor their screening programmes according to local needs, resources and opportunities. Commentary on: Guindo et al. Potential for a large-scale newborn screening strategy for sickle cell disease in Mali: a comparative diagnostic performance study of two rapid diagnostic tests (SickleScan® and HemotypeSC®) on cord blood. Br J Haematol 2024;204:337-345 and Gravholt et al. The Danish national haemoglobinopathy screening programme: report from 16 years of screening in a low-prevalence, non-endemic region. Br J Haematol 2024;204:329-336.
Asunto(s)
Anemia de Células Falciformes , Hemoglobinopatías , Recién Nacido , Humanos , Hemoglobinopatías/diagnóstico , Hemoglobinopatías/epidemiología , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/epidemiología , Tamizaje Neonatal/métodos , Sangre Fetal , HemoglobinasRESUMEN
Hydroxyurea treatment for children with sickle cell anemia (SCA) is effective and life-saving. Stepwise escalation to maximum tolerated dose (MTD) provides optimal benefits, but is logistically challenging and time-consuming, especially in low-income countries where most people with SCA live. Model-informed precision dosing (MIPD) of hydroxyurea expedites MTD determination and improves outcomes compared with trial-and-error dose adjustments. HdxSim, a user-friendly, online, clinical decision support tool was developed to facilitate hydroxyurea MIPD and evaluated using real-world pharmacokinetic (PK) data. First-dose hydroxyurea PK profiles were analyzed from two clinical trial datasets (Hydroxyurea Study of Long-Term Effects (HUSTLE), NCT00305175 and Therapeutic Response Evaluation and Adherence Trial (TREAT), NCT02286154). Areas under the concentration-time curve (AUC) estimated by HdxSim were compared with those determined using traditional trapezoidal methodology and PK software (MWPharm-DOS). The doses predicted by HdxSim and MWPharm-DOS were compared with the observed clinical MTD. For HUSTLE participants, HdxSim accurately estimated hydroxyurea AUC compared with the trapezoidal method, with < 20% variance. The average (mean ± SD) AUC for TREAT participants estimated with HdxSim (68.6 ± 18.0 mg*hour/L) was lower than MWPharm-DOS (78.6 ± 20.7 mg*hour/L, P = 0.012), but the average recommended doses were not different (425 vs. 423 mg/day, P = 0.97). Moreover, HdxSim was non-inferior to MWPharm-DOS at predicting clinical MTD (absolute difference 3.9 ± 5.8 vs. 4.9 ± 8.2 mg/kg/day, P = 0.19). HdxSim accurately estimates hydroxyurea exposure and is noninferior to traditional PK approaches at predicting the clinical hydroxyurea MTD. Hydroxyurea dosing based on target exposure leads to improved outcomes in children with SCA, and has the potential to make PK-guided hydroxyurea dosing more accessible to this neglected population globally.
RESUMEN
BACKGROUND: Haemoglobin SC (HbSC) is a common form of sickle cell disease (SCD), especially among individuals of West African ancestry. Persons with HbSC disease suffer from the same clinical complications and reduced quality of life that affect those with sickle cell anaemia (HbSS/Sß0). Retrospective anecdotal data suggest short-term safety and benefits of hydroxyurea for treating HbSC, yet rigorous prospective data are lacking regarding optimal dosing, clinical and laboratory effects, long-term safety and benefits, and appropriate endpoints to monitor. Prospective Investigation of Variables as Outcomes for Treatment (PIVOT) was designed with three aims: (1) to measure the toxicities of hydroxyurea treatment on laboratory parameters, (2) to assess the effects of hydroxyurea treatment on sickle-related clinical and laboratory parameters, and (3) to identify study endpoints suitable for a future definitive phase III trial of hydroxyurea treatment of HbSC disease. METHODS: PIVOT is a randomised, placebo-controlled, double blind clinical trial of hydroxyurea. Approximately 120 children and 120 adults ages 5-50 years with HbSC disease will be enrolled, screened for 2 months, and then randomised 1:1 to once-daily oral hydroxyurea or placebo. Study treatment will be prescribed initially at 20 ± 5 mg/kg/day with an opportunity to escalate the dose twice over the first 6 months. After 12 months of blinded study treatment, all participants will be offered open-label hydroxyurea for up to 4 years. Safety outcomes include treatment-related cytopenias, whole blood viscosity, and adverse events. Efficacy outcomes include a variety of laboratory and clinical parameters over the first 12 months of randomised treatment, including changes in haemoglobin and fetal haemoglobin, intracranial arterial velocities measured by transcranial Doppler ultrasound, cerebral oxygenation using near infrared spectrometry, spleen volume and kidney size by ultrasound, proteinuria, and retinal imaging. Exploratory outcomes include functional erythrocyte analyses with ektacytometry for red blood cell deformability and point-of-sickling, patient-reported outcomes using the PROMIS questionnaire, and 6-min walk test. DISCUSSION: For children and adults with HbSC disease, PIVOT will determine the safety of hydroxyurea and identify measurable changes in laboratory and clinical parameters, suitable for future prospective testing in a definitive multi-centre phase III clinical trial. TRIAL REGISTRATION: PACTR, PACTR202108893981080. Registered 24 August 2021, https://pactr.samrc.ac.za.
Asunto(s)
Anemia de Células Falciformes , Enfermedad de la Hemoglobina SC , Adulto , Niño , Humanos , Hidroxiurea/efectos adversos , Ghana , Calidad de Vida , Estudios Retrospectivos , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Background: Pregnant and lactating women were not included in the initial large vaccine clinical trials for SARS-CoV-2 (COVID) infection. Delineating the antibody titers in serum and breast milk of lactating women is important to determine the safety and benefits of vaccination in this special population. Objective: To investigate COVID vaccinations in breastfeeding dyads and effects on lactation, the Antibody Detection of Vaccine-Induced Secretory Effects trial (ADVISE) prospectively evaluated anti-COVID antibodies in serum and breast milk after initial paired and booster vaccines. Methods: This is a prospective longitudinal surveillance cohort study of lactating women. Eligibility criteria included ≥18 years of age, currently lactating, and at enrollment either received COVID vaccination within the past 60 days or planning vaccination within 60 days. Results: Among 63 lactating mothers, COVID vaccination led to breast milk secretory IgA (sIgA) and IgG antibodies with consistent viral neutralizing activity. Milk sIgA titers increased further after second vaccination and were prolonged after a third booster dose, including women with extended breastfeeding beyond 12 months. Milk IgG antibody titers were higher and more sustained than sIgA. Antibody titers were not associated with individual dyad characteristics or vaccine manufacturer. Vaccine-induced antibodies from milk were not detected in infant circulation. Conclusions and Relevance: Maternal COVID vaccination during lactation is well tolerated and generates sustained and boosted antibody responses in breast milk. COVID-specific sIgA and IgG antibodies with neutralizing activity are found in breast milk, including boosted mothers who continue breastfeeding beyond 12 months. These data support universal COVID vaccinations for all lactating mothers, including booster immunizations during extended breastfeeding (NCT04895475).
Asunto(s)
COVID-19 , Leche Humana , Adolescente , Adulto , Femenino , Humanos , Anticuerpos Antivirales , Formación de Anticuerpos , Lactancia Materna , Estudios de Cohortes , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Inmunoglobulina A Secretora , Inmunoglobulina G , Lactancia , Estudios Prospectivos , SARS-CoV-2 , Vacunación , LactanteRESUMEN
BACKGROUND AND OBJECTIVE: The disease burden of sickle cell anemia (SCA) in sub-Saharan African (SSA) countries is substantial, with many children dying without an established diagnosis or proper treatment. The global burden of SCA is increasing each year, making therapeutic intervention a high priority. Hydroxyurea is the only disease-modifying therapy with proven feasibility and efficacy suitable for SSA; however, no one has quantified the health economic implications of its use. Therefore, from the perspective of the health care provider, we estimated the incremental cost-effectiveness of hydroxyurea as a fixed-dose regimen or maximum tolerated dose (MTD) regimen, versus SCA care without hydroxyurea. METHODS: We estimated the cost of providing outpatient treatment at a pediatric sickle cell clinic in Kampala, Uganda. These estimates were used in a discrete-event simulation model to project mean costs (2021 US$), disability-adjusted life years (DALYs), and consumption of blood products per patient (450 mL units), for patients between 9 months and 18 years of age. We calculated cost-effectiveness as the ratio of incremental costs over incremental DALYs averted, discounted at 3% annually. To test the robustness of our findings, and the impact of uncertainty, we conducted probabilistic and one-way sensitivity analyses, scenario analysis, and price threshold analyses. RESULTS: Hydroxyurea treatment averted an expected 1.37 DALYs and saved US$ 191 per patient if administered at the MTD, compared with SCA care without hydroxyurea. In comparison, hydroxyurea at a fixed dose averted 0.80 DALYs per patient at an incremental cost of US$ 2. The MTD strategy saved 11.2 (95% CI 11.1-11.4) units of blood per patient, compared with 9.1 (95% CI 9.0-9.2) units of blood per patient at the fixed-dose alternative. CONCLUSIONS: Hydroxyurea at MTD is likely to improve quality of life and reduce the consumption of blood products for children with SCA living in Uganda. Compared with a fixed dose regimen, treatment dosing at MTD is likely to be a cost-effective treatment for SCA, using realistic ranges of hydroxyurea costs that are relevant across SSA. Compared with no use of the drug, hydroxyurea could lead to substantial net savings per patient, while reducing the disease morbidity and mortality and increasing quality of life.
Asunto(s)
Anemia de Células Falciformes , Hidroxiurea , Niño , Humanos , Hidroxiurea/uso terapéutico , Análisis Costo-Beneficio , Calidad de Vida , Uganda , Anemia de Células Falciformes/tratamiento farmacológicoRESUMEN
Introduction: Hydroxyurea is effective disease-modifying treatment for sickle cell anemia (SCA). Escalation to maximum tolerated dose (MTD) achieves superior benefits without additional toxicities, but requires dose adjustments with serial monitoring. Pharmacokinetic (PK)-guided dosing can predict a personalized optimal dose, which approximates MTD and requires fewer clinical visits, laboratory assessments, and dose adjustments. However, PK-guided dosing requires complex analytical techniques unavailable in low-resource settings. Simplified hydroxyurea PK analysis could optimize dosing and increase access to treatment. Methods: Concentrated stock solutions of reagents for chemical detection of serum hydroxyurea using HPLC were prepared and stored at -80C. On the day of analysis, hydroxyurea was serially diluted in human serum, then spiked with N-methylurea as an internal standard and analyzed using two commercial HPLC machines: 1) standard benchtop Agilent with 449 nm detector and 5 micron C18 column; and 2) portable PolyLC with 415 nm detector and 3.5 micron C18 column. After validation in the United States, the portable HPLC and chemicals were transported to Tanzania. Results: A calibration curve using hydroxyurea 2-fold dilutions ranging from 0 to 1000 µM was plotted against the hydroxyurea:N-methylurea ratio. In the United States, both HPLC systems yielded calibration curves with R2 > 0.99. Hydroxyurea prepared at known concentrations confirmed accuracy and precision within 10%-20% of the actual values. Both HPLC systems measured hydroxyurea with <10% variance from the prepared concentrations, and paired analysis of samples on both machines documented <15% variance. Serial measurements of 300 and 100 µM concentrations using the PolyLC system were precise with 2.5% coefficient of variance. After transport to Tanzania with setup and training, the modified PolyLC HPLC system produced similar calibration curves with R2 > 0.99. Conclusion: Increasing access to hydroxyurea for people with SCA requires an approach that eases financial and logistical barriers while optimizing safety and benefits, especially in low-resource settings. We successfully modified a portable HPLC instrument to quantify hydroxyurea, validated its precision and accuracy, and confirmed capacity building and knowledge transfer to Tanzania. HPLC measurement of serum hydroxyurea is now feasible in low-resource settings using available laboratory infrastructure. PK-guided dosing of hydroxyurea will be tested prospectively to achieve optimal treatment responses.
RESUMEN
BACKGROUND: The mechanism for anaphylaxis following mRNA COVID-19 vaccination has been widely debated; understanding this serious adverse event is important for future vaccines of similar design. A mechanism proposed is type I hypersensitivity (i.e., IgE-mediated mast cell degranulation) to polyethylene glycol (PEG). Using an assay that, uniquely, had been previously assessed in patients with anaphylaxis to PEG, our objective was to compare anti-PEG IgE in serum from mRNA COVID-19 vaccine anaphylaxis case-patients and persons vaccinated without allergic reactions. Secondarily, we compared anti-PEG IgG and IgM to assess alternative mechanisms. METHODS: Selected anaphylaxis case-patients reported to U.S. Vaccine Adverse Event Reporting System December 14, 2020-March 25, 2021 were invited to provide a serum sample. mRNA COVID-19 vaccine study participants with residual serum and no allergic reaction post-vaccination ("controls") were frequency matched to cases 3:1 on vaccine and dose number, sex and 10-year age category. Anti-PEG IgE was measured using a dual cytometric bead assay (DCBA). Anti-PEG IgG and IgM were measured using two different assays: DCBA and a PEGylated-polystyrene bead assay. Laboratorians were blinded to case/control status. RESULTS: All 20 case-patients were women; 17 had anaphylaxis after dose 1, 3 after dose 2. Thirteen (65â¯%) were hospitalized and 7 (35â¯%) were intubated. Time from vaccination to serum collection was longer for case-patients vs controls (post-dose 1: median 105 vs 21â¯days). Among Moderna recipients, anti-PEG IgE was detected in 1 of 10 (10â¯%) case-patients vs 8 of 30 (27â¯%) controls (pâ¯=â¯0.40); among Pfizer-BioNTech recipients, it was detected in 0 of 10 case-patients (0â¯%) vs 1 of 30 (3â¯%) controls (pâ¯>nâ¯0.99). Anti-PEG IgE quantitative signals followed this same pattern. Neither anti-PEG IgG nor IgM was associated with case status with both assay formats. CONCLUSION: Our results support that anti-PEG IgE is not a predominant mechanism for anaphylaxis post-mRNA COVID-19 vaccination.
Asunto(s)
Anafilaxia , Vacunas contra la COVID-19 , COVID-19 , Femenino , Humanos , Masculino , Anafilaxia/etiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Inmunoglobulina E , Inmunoglobulina G , Inmunoglobulina M , Inmunosupresores , Polietilenglicoles/efectos adversos , ARN Mensajero , Vacunación/efectos adversosRESUMEN
Effective treatments for genetic disorders that coevolved with pathogens require simultaneous betterment of both conditions. Hydroxyurea (HU) offers safe and efficacious treatment for sickle cell anemia (SCA) by reducing clinical complications, transfusions, and death rates. Despite concerns that the HU treatment for SCA would increase infection risk by the human malaria Plasmodium falciparum, (the genetic driver of the sickle mutation), HU instead reduced clinical malaria. We used physiologically relevant drug exposures that mimic in vivo pharmacokinetics in humans. Under these conditions, we showed that HU and other ribonucleotide reductase (RNR) inhibitors have significant, intrinsic killing activity in vitro against schizont stages of P falciparum in both normal and sickle red blood cells. Long-term in vitro selection with HU increased the expression of Pfrnr genes but showed a low risk of eliciting stably resistant parasites or compromising the potency of current antimalarial drugs. Additive activity devoid of antagonism by HU was observed with a wide spectrum of commonly used antimalarial treatments. These data endorse broad, safe, and long-term use of HU for SCA in malaria-endemic countries and provide a novel biological model for the treatment of a genetic disorder with simultaneous, adjunct therapy of a life-threatening infection needed in a global health setting.