Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 166: 115364, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37639746

RESUMEN

Mitragynine (MG) is an indole alkaloid found in the extract of Mitragyna speciosa Korth native to Southeast Asia. Although MG is known for its pain-relieving and psychoactive effects, reports have suggested that it has therapeutic potential against neoplasms and psychiatric disorders. However, no evidence currently exists to support the effect of MG on brain tumors. This study aimed to investigate the antitumor effects of MG in C6 rat glioma and SH-SY5Y human neuroblastoma tumor cell lines compared with those in the non-tumor HT22 mouse hippocampal neuronal cell line. MTT assay for cell viability, clonogenic and wound healing assays for cell migration, Hoechst 33342/propidium iodide staining for nuclear morphology, and cell cycle distribution using flow cytometry were performed. MG at 125.47 µM (50 µg/ml) significantly reduced the viability of all cell lines, and the clonogenicity of C6 glioma cells began decreasing at 75.28 µM (30 µg/ml) of MG. Cell migration was inhibited in C6 and HT22 cells treated with 75.28 µM (30 µg/ml) of MG. Apoptotic nuclear condensation and fragmentation were observed in all cell lines treated with 125.47 µM (50 µg/ml) MG, whereas late-phase apoptotic cells were predominant in the group treated with 250.94 µM (100 µg/ml) of MG. The cell cycle assay results suggest that MG arrested the S phase in the C6 cell line and the G2/M phase in the HT22 cell lines. This study showed that MG induces cell death and cell cycle arrest, disrupting cell migration and reducing the clonogenicity of brain tumor cells.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neuroblastoma , Humanos , Ratas , Ratones , Animales , Neuroblastoma/tratamiento farmacológico , Neuronas , Glioma/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , División Celular
2.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175777

RESUMEN

Bacterial meningitis remains one of the most prevalent infectious diseases worldwide. Although advances in medical care have improved mortality and morbidity, neurological complications remain high. Therefore, aside from antibiotics, therapeutic adjuvants targeting neuroinflammation are essential to combat the long-term neuronal sequelae of bacterial meningitis. In the present study, we propose (-)-dendroparishiol as a potential add-on therapy to improve neuroinflammation associated with bacterial meningitis. The biological activity of (-)-dendroparishiol was first predicted by computational analysis and further confirmed in vitro using a cell-based assay with LPS-induced BV-2 microglial cells. Biological pathways involved with (-)-dendroparishiol were identified by applying network pharmacology. Computational predictions of biological activity indicated possible attenuation of several inflammatory processes by (-)-dendroparishiol. In LPS-induced BV-2 microglial cells, (-)-dendroparishiol significantly reduced the expression of inflammatory mediators: iNOS, NO, COX-2, IL-6, and TNF-α. Molecular docking results demonstrated the potential iNOS and COX-2 inhibitory activity of (-)-dendroparishiol. Network pharmacological analysis indicated the plausible role of (-)-dendroparishiol in biological processes involved in oxidative stress and neuroinflammation with enrichment in neuroinflammatory pathways. Overall, this study provides scientific evidence for the potential application of (-)-dendroparishiol in the management of bacterial meningitis-associated neuroinflammation.


Asunto(s)
Inflamación , Meningitis Bacterianas , Humanos , Inflamación/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/efectos adversos , Simulación del Acoplamiento Molecular , Farmacología en Red , Microglía/metabolismo , Meningitis Bacterianas/metabolismo , FN-kappa B/metabolismo
3.
Nutrients ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986262

RESUMEN

Nigella sativa L. and black seeds are traditionally used for cooking and medicinal purposes in Arab and other countries. Although N. sativa seed extract has many known biological effects, the biological effects of cold-pressed N. sativa oil are poorly understood. Therefore, the objective of this study was to investigate the gastroprotective effects and subacute oral toxicity of black seed oil (BSO) in an animal model. The gastroprotective effects of oral BSO (50% and 100%; 1 mg/kg) were tested using acute experimental models of ethanol-induced gastric ulcers. Gross and histological gastric lesions, ulcerated gastric areas, ulcer index score, percentage of inhibition rate, gastric juice pH, and gastric wall mucus were all evaluated. The subacute toxicity of BSO and its thymoquinone (TQ) content were also examined. The results indicated that the administration of BSO exerted gastroprotective effects by increasing the gastric wall mucus and decreasing gastric juice acidity. In the subacute toxicity test, the animals behaved normally, and their weight and water and food intake did not show significant variations. High-performance liquid chromatography detected 7.3 mg/mL TQ in BSO. These findings suggest that BSO may be a safe therapeutic drug for preventing gastric ulcers.


Asunto(s)
Antiulcerosos , Nigella sativa , Úlcera Gástrica , Ratas , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control , Etanol/efectos adversos , Ratas Wistar , Mucosa Gástrica , Extractos Vegetales/química , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico
4.
Foods ; 11(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36230143

RESUMEN

Obesity and overweight have serious health outcomes. "Phikud Tri-Phon" (PTP) is a traditional Thai medicine comprising three dried fruits from Aegle marmelos L., Morinda citrifolia L., and Coriandrum sativum L. Whether this medicine impacts on metabolic disease is unclear. This study aimed to investigate the phenolic and flavonoid contents of PTP and each of its herbal components, and further assess their antioxidant and anti-adipogenetic activities. Oil-red O staining was measured for lipid accumulation in 3T3-L1 adipocytes. The chemical profiles of PTP and each herbal extract were determined by LC-ESI-QTOF-MS/MS. Our results show that the total phenolic and flavonoid contents of PTP water extract were 22.35-108.42 mg of gallic acid equivalents and PTP ethanolic extract was 1.19-0.93 mg of quercetin equivalents and the DPPH scavenging capacity assay of PTP ethanolic extract (1 mg/mL) was 92.45 ± 6.58 (Trolox equivalent)/g. The PTP extracts and individual herbs had inhibitory adipogenesis activity, which reduced lipid accumulation by approximately 31% in PTP water extract and 22% in PTP ethanolic extract compared with control cells. These results provided insights into the traditional preparation method of using boiling water as a vehicle for PTP. In conclusion, PTP has antioxidant and anti-adipogenesis potential, indicating it is a promising ingredient in functional food and herbal health products.

5.
Nutrients ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235558

RESUMEN

Kratom (Mitragyna speciosa (Korth.) Havil.) has been used to reduce blood sugar and lipid profiles in traditional medicine, and mitragynine is a major constituent in kratom leaves. Previous data on the blood sugar and lipid-altering effects of kratom are limited. In this study, phytochemical analyses of mitragynine, 7-hydroxymitragynine, quercetin, and rutin were performed in kratom extracts. The effects on α-glucosidase and pancreatic lipase activities were investigated in kratom extracts and mitragynine. The LC-MS/MS analysis showed that the mitragynine, quercetin, and rutin contents from kratom extracts were different. The ethanol extract exhibited the highest total phenolic content (TPC), total flavonoid content (TFC), and total alkaloid content (TAC). Additionally, compared to methanol and aqueous extracts, the ethanol extract showed the strongest inhibition activity against α-glucosidase and pancreatic lipase. Compared with the anti-diabetic agent acarbose, mitragynine showed the most potent α-glucosidase inhibition, with less potent activity of pancreatic lipase inhibition. Analysis of α-glucosidase and pancreatic lipase kinetics revealed that mitragynine inhibited noncompetitive and competitive effects, respectively. Combining mitragynine with acarbose resulted in a synergistic interaction with α-glucosidase inhibition. These results have established the potential of mitragynine from kratom as a herbal supplement for the treatment and prevention of diabetes mellitus.


Asunto(s)
Mitragyna , Acarbosa , Glucemia/análisis , Cromatografía Liquida , Etanol/análisis , Lipasa , Lípidos/análisis , Metanol , Mitragyna/química , Extractos Vegetales/química , Hojas de la Planta/química , Quercetina/análisis , Rutina/análisis , Espectrometría de Masas en Tándem , alfa-Glucosidasas
6.
Nutrients ; 14(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889842

RESUMEN

Although many natural products have proven their potential to regulate obesity through the modulation of adipocyte biology, none of them has yet been approved for clinical use in obesity therapy. This work aims to isolate valuable secondary metabolites from an orchid species (Dendrobium heterocarpum) and evaluate their possible roles in the growth and differentiation of 3T3-L1 pre-adipocytes. Six compounds were isolated from the orchid's methanolic extracts and identified as amoenylin (1), methyl 3-(4-hydroxyphenyl) propionate (2), 3,4-dihydroxy-5,4'-dimethoxybibenzyl (3), dendrocandin B (4), dendrofalconerol A (5), and syringaresinol (6). Among these phytochemicals, compounds 2, 3, and 6 exhibited lower effects on the viability of 3T3-L1 cells, offering non-cytotoxic concentrations of ≲10 µM. Compared to others tested, compound 3 was responsible for the maximum reduction of lipid storage in 3T3-L1 adipocytes (IC50 = 6.30 ± 0.10 µM). A set of protein expression studies unveiled that compound 3 at non-cytotoxic doses could suppress the expression of some key transcription factors in adipocyte differentiation (i.e., PPARγ and C/EBPα). Furthermore, this compound could deactivate some proteins involved in the MAPK pathways (i.e., JNK, ERK, and p38). Our findings prove that D. heterocarpum is a promising source to explore bioactive molecules capable of modulating adipocytic growth and development, which can potentially be assessed and innovated further as pharmaceutical products to defeat obesity.


Asunto(s)
Dendrobium , Células 3T3-L1 , Adipocitos , Adipogénesis , Animales , Diferenciación Celular , Dendrobium/metabolismo , Lípidos/farmacología , Metanol/farmacología , Ratones , Obesidad/metabolismo , PPAR gamma/metabolismo , Extractos Vegetales/química
7.
Heliyon ; 7(9): e08078, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34632145

RESUMEN

The number of patients with type 2 diabetes mellitus (T2DM) has increased worldwide. Although an instant cure was achieved with the standard treatment acabose, unsatisfactory symptoms associated with cardiovascular disease after acabose administration have been reported. Therefore, it is important to explore new treatments. A Thai folk recipe has long been used for T2DM treatment, and it effectively decreases blood glucose. However, the mechanism of this recipe has never been proven. Therefore, the potential anti-T2DM effect of this recipe, which is used in Thai hospitals, was determined to involve alpha-glucosidase (AG) inhibition with a half maximal inhibitory concentration (IC50). In vitro experiments showed that crude Cinnamomum verum extract (IC50 = 0.35 ± 0.12 mg/mL) offered excellent inhibitory activity, followed by extracts from Tinospora crispa (IC50 = 0.69 ± 0.39 mg/mL), Stephania suberosa (IC50 = 1.50 ± 0.17 mg/mL), Andrographis paniculate (IC50 = 1.78 ± 0.35 mg/mL), and Thunbergia laurifolia (IC50 = 4.66 ± 0.27 mg/mL). However, the potencies of these extracts were lower than that of acabose (IC50 = 0.55 ± 0.11 mg/mL). Therefore, this study investigated and developed a formulation of this recipe using computational docking. Among 61 compounds, 7 effectively inhibited AG, including chlorogenic acid (IC50 = 819.07 pM) through 5 hydrogen bonds (HBs) and 2 hydrophobic interactions (HIs); ß-sitosterol (IC50 = 4.46 nM, 6 HIs); ergosterol peroxide (IC50 = 4.18 nM, 6 HIs); borapetoside D (IC50 = 508.63 pM, 7 HBs and 2 HIs); borapetoside A (IC50 = 1.09 nM, 2 HBs and 2 His), stephasubimine (IC50 = 285.37 pM, 6 HIs); and stephasubine (IC50 = 1.09 nM, 3 HBs and 4 HIs). These compounds bind with high affinity to different binding pockets, leading to additive effects. Moreover, the pharmacokinetics of six of these seven compounds (except ergosterol peroxide) showed poor absorption in the gastrointestinal tract, which would allow for competitive binding to AG in the small intestine. These results indicate that the development of these 6 compounds into oral antidiabetic agents is promising.

8.
Antioxidants (Basel) ; 10(2)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562174

RESUMEN

Five compounds including a new bisbibenzyl named dendropachol (1) and four known compounds (2-5) comprising 4,5-dihydroxy-2,3-dimethoxy-9,10-dihydrophenanthrene (2), gigantol (3), moscatilin (4) and 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (5) were isolated from a methanolic extract of Dendrobium pachyglossum (Orchidaceae). The chemical structures of the isolated compounds were characterized by spectroscopic methods. Dendropachol (1) was investigated for its protective effects on hydrogen peroxide (H2O2)-induced oxidative stress in HaCaT keratinocytes. Compound 1 showed strong free radical scavenging compared to the positive control. For the cytoprotective effect, compound 1 increased the activities of GPx and CAT and the level of GSH but reduced intracellular reactive oxygen species (ROS) generation and accumulation. In addition, compound 1 significantly diminished the expression of p53, Bax, and cytochrome C proteins, decreased the activities of caspase-3 and caspase-9, and increased Bcl-2 protein. The results suggested that compound 1 exhibited antioxidant activities and protective effects in keratinocytes against oxidative stress induced by H2O2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...